中计算散度的函数_快速理解梯度,散度和旋度

6de2d3f36993cdb194b048533302bd0f.png

今天的文章比较短。

约定:本文中除非特别说明,否则出现的向量均默认是列向量。大写字母表示矩阵,小写加粗的字母表示向量,小写但是不加粗的字母表示标量。

1.算子的定义

首先定义一个向量算子

该算子也叫哈密顿算子,其中

分别是
方向的单位向量。为了计算方便,我们引入线性代数的风格来改写公式( 1),即:

其中,

表示转置。

2.梯度

首先说明,梯度是一个向量,它表示函数在某个点处往哪个方向走,变化最快,即梯度等于方向导数的最大值。对于一个标量函数

,定义它的梯度为:

公式(3)中,我们把向量算子

对标量函数
的作用当成向量与标量的乘法,这样可以和线性代数中的向量和标量的运算进行统一,同时也方便记忆。

注意:只有标量函数才有梯度,不管是公式(1)还是公式(3)计算出来的结果都是向量,也就是说梯度是一个向量。

3.散度

散度是一个标量,它表示一个闭合曲面内单位体积的通量。散度的作用对象是一个矢量函数,对于一个矢量函数

,散度的定义为:

为了方便记忆,可以将散度类比于线性代数中的向量内积,两个向量的内积是一个标量,而散度的结果也是一个标量。

注意:因为散度的定义本质和线性代数的内积定义类似,而向量算子

又可以看做是一个向量,因此散度的作用对象只能是矢量函数。

4.旋度

旋度是一个向量,它表示单位面积的环量,即环量面密度。旋度的作用对象是一个矢量函数,对于一个矢量函数

,旋度的定义为:

对于公式( 5),为了方便记忆,可以将其看做是行列式按第一行展开计算,即:

公式(6)中,可能有人会奇怪,为什么我把列向量(

,
)放在左边与常数相乘,我们很多教材都是把常量放左边,列向量放右边的。这里解释一下,向量与常数相乘,列向量放在左边,常数放在右边符合矩阵乘法,比如一个列向量是
的,常数看成是
的,显然,列向量放在左边,常数放在右边是符合矩阵乘法的,反之不符合。如果上述列向量改成行列量,那么两者左右调换即可。简单说就是:列向量与常数相乘,常数放右边;行向量与常数相乘,常数放左边。

5.对标量场的梯度求其散度

令公式(7)等于0,就得到了Laplacian方程:

6.对标量场的梯度求其旋度

从公式(9)可知,梯度的旋度为0向量,表明梯度是一个无旋场。

7.对旋度求其散度

从公式(10)可知,旋度是一个无源场。

综合6和7可知,梯度的旋度为0,旋度的散度也为0。

欢迎各位知友批评指正。

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 游动-白 设计师:白松林 返回首页