电磁兼容------第一章 矢量分析1(散度)

电磁兼容

1. 矢量

1.1 矢量表示

标量:只有大小没有方向的量。eg:T、m、l、t、U、q、I、E。
矢量:有大小有方向的量。eg;F、v、J
矢量a
模a=|a|
单位方向矢量单位方向矢量 矢量矢量

1.2 矢量的计算

加法:加法
减法:减法
标量与矢量相乘:标量c与矢量a相乘
矢量与矢量相乘:在这里插入图片描述
点积(点乘):a·b=abcosθ


交换律:a·b=b·a
分配律:a·(b+c)=a·b+a·c

叉积(叉乘):叉乘


交换律:a×b≠b×a

2. 场

2.1 定义

在指定时刻,如果空间某区域中的每一点都可以用一个量唯一描述,则此区域中存在由该量构成的场。场可以用函数表示场量的空间和时间分布特性,即场函数。

2.2 分类

静态场:场量不随时间变化,场函数与时间无关。
时变场:场量随时间变化,场函数是时间的函数。
标量场:场量为标量,场函数是个标量函数。
矢量场:场量为矢量,场函数是个矢量函数。

2.3 矢量场的通量

2.3.1 定义

对矢量场和有向曲面的点积做面积分,其结果就是矢量场穿过曲面的通量。

2.3.2 公式

通量通量
通量
如果曲面是个闭合曲面,其通量非零就表示闭面所包围体积内有(正、负)源存在。源

2.4 矢量场的散度

2.4.1 定义

对矢量场中任一点处,通过包围该点的单位体积之表面的通量称为散度。
定义式:散度
散度与体积元的形状无关。

2.4.2 表达式

散度在直角坐标系的表达式为:散度表达式

其中

2.4.3 哈密顿算子

在直角坐标系的矢量分析中,▽既是一个微分算子,又可看作是一个矢量。
哈密顿算子(▽读作nabla)哈密顿算子
在直角坐标系中的散度用▽表示为
散度

2.4.4 散度的性质

分配律:▽·(a+b)=▽·a+▽·b
常矢量c:▽·c=0
常数c:▽·(cF)=c▽·F
u是标量函数:▽·(uF)=F·▽u+u▽·F

2.4.5 散度定理(高斯定理)

散度定理
矢量场的散度的体积积分等于矢量场穿过包围该面积的闭合曲面的通量。

2.4.6 散度的应用

例1
用来分析矢量场的分布情况及变化率(偏导)
例2
散度不能探测到旋涡状矢量场的存在!

3. 总结

简单回顾了一下高等数学中矢量相关计算,并学习了其在电磁场中的应用,其中哈密顿算子的学习尤为重要。这些基础性内容将会贯穿接下来这门课程的学习,尤为重要。

                                                                                          【*FROM  NING*】
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陌柠>-<

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值