泰勒公式Latex可复制笔记

泰勒公式是数学分析中的一个重要工具,它用于将一个复杂函数在某一点附近用多项式逼近。这个公式由英国数学家布鲁克·泰勒(Brook Taylor)在1715年提出。泰勒公式的基本思想是,如果一个函数在某一点处足够光滑(即具有足够高的连续导数),那么该函数在该点附近可以用一个多项式来近似表示。

泰勒公式的形式

假设函数 f ( x ) f(x) f(x) 在点 a a a 处有 n + 1 n+1 n+1 阶连续导数,那么对于 x x x a a a 附近的值,函数 f ( x ) f(x) f(x) 可以表示为:

f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + ⋯ + f ( n ) ( a ) n ! ( x − a ) n + R n ( x ) f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x) f(x)=f(a)+f(a)(xa)+2!f′′(a)(xa)2++n!f(n)(a)(xa)n+Rn(x)

其中, f ( n ) ( a ) f^{(n)}(a) f(n)(a) 表示函数 f ( x ) f(x) f(x) 在点 a a a 处的第 n n n 阶导数, R n ( x ) R_n(x) Rn(x) 是余项,表示多项式逼近的误差。

余项 R n ( x ) R_n(x) Rn(x)

余项 R n ( x ) R_n(x) Rn(x) 有多种形式,常见的两种是拉格朗日余项和皮亚诺余项:

  1. 拉格朗日余项

    R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − a ) n + 1 R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)(xa)n+1

    其中 ξ \xi ξ 是介于 a a a x x x 之间的一个数。

  2. 皮亚诺余项
    R n ( x ) = o ( ( x − a ) n ) R_n(x) = o((x-a)^n) Rn(x)=o((xa)n)
    表示当 x x x 趋近于 a a a 时,余项 R n ( x ) R_n(x) Rn(x) 是比 ( x − a ) n (x-a)^n (xa)n 更高阶的无穷小。

泰勒公式的应用

泰勒公式在数学和物理学中有广泛的应用,例如:

  • 函数逼近:通过泰勒公式,可以用多项式近似复杂函数,简化计算。
  • 数值分析:在数值计算中,泰勒公式用于估计误差和提高计算精度。
  • 微分方程:在求解微分方程时,泰勒公式可以用于展开解函数,便于分析和计算。

示例

考虑函数 f ( x ) = e x f(x) = e^x f(x)=ex x = 0 x = 0 x=0 处的泰勒展开:

e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ + x n n ! + R n ( x ) e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!} + R_n(x) ex=1+x+2!x2+3!x3++n!xn+Rn(x)

其中, f ( n ) ( 0 ) = e 0 = 1 f^{(n)}(0) = e^0 = 1 f(n)(0)=e0=1 对于所有 n n n,因此:

e x = 1 + x + x 2 2 + x 3 6 + ⋯ + x n n ! + R n ( x ) e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots + \frac{x^n}{n!} + R_n(x) ex=1+x+2x2+6x3++n!xn+Rn(x)

这个展开式在数值计算中非常有用,特别是在计算 e x e^x ex 的近似值时。

  • 16
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值