深度学习入门-(基于python的理论与实现)1-代码练习

照着书上敲的

import os, sys
sys.path.append(os.pardir)

""""
sys.path.append
sys.path.append(os.pardir)
python程序中使用 import XXX 时,python解析器会在当前目录、
已安装和第三方模块中搜索 xxx,如果都搜索不到就会报错。

mnist_show.py文件的当前工作目录为ch03,
但是load_mnist()函数的mnist.py文件在dataset目录下。
因此,mnist_show.py文件不可以跨文件直接导入mnist.py文件。
sys.path.append(os.pardir)语句实际上是把
父目录deep-learning-from-scatch加入到
sys.path(Python 的搜索目录模块的路径集中),
从而可以导入deep-learning-from-scatch下的任何目录(包括dataset目录)中的任何文件。
"""

from dataset.mnist import load_mnist

(x_train,t_train),(x_test,t_test) = load_mnist(flatten=True,normalize=False) #flatten是展开成一维数组,原图像28X28 展开后是 一维数组(784)个数据
#训练图像 ,训练标签 ,测试图像,测试标签
print(x_train.shape) #矩阵是 (60000, 784) 60000张图片,每一行是一张图片的信息。
print(t_train.shape)
print(x_test.shape)
print(t_test.shape)
"""
(60000, 784)
(60000,)
(10000, 784)
(10000,)
"""

完整版: 

import sys,os
sys.path.append(os.pardir)

import numpy as np
from dataset.mnist import load_mnist
from PIL import Image

def img_show(img):
    pil_img = Image.fromarray(np.uint8(img))
    pil_img.show()

(x_train,t_train),(x_test,t_test) = load_mnist(flatten=True,normalize=False)
img = x_train[0]
label= t_train[0]
print(label)

print(img.shape)
img = img.reshape(28,28)
print(img.shape)

img_show(img)

利用神经网络测试正确率:

get_data 是获取数据

init_network 是用现成的(训练好的)网络模型

predict是统计成功率

import os,sys
sys.path.append(os.pardir)
import numpy as np
from PIL import Image
import pickle
from dataset.mnist import load_mnist
from common.functions import sigmoid,softmax


def get_data():
    (x_train, t_train), (x_test, t_test) = load_mnist(flatten=True, normalize=True, one_hot_label=False)
    return x_test,t_test

def init_network():
    with open("sample_weight.pkl","rb") as f:
        network = pickle.load(f)

    return network


def predict(network,x): # 把现成的参数(偏执和权重)取过来
    W1,W2,W3 = network['W1'],network['W2'],network['W3']
    b1,b2,b3 = network['b1'],network['b2'],network['b3']
    a1 = np.dot(x,W1)+b1
    z1 = sigmoid(a1)
    a2 = np.dot(z1,W2)+b2
    z2 = sigmoid(a2)
    a3 = np.dot(z2,W3)+b3
    y = sigmoid(a3)
    return y  # y可以认为是概率矩阵


x,t = get_data()
network = init_network()
accuracy_cnt = 0

for i in range(len(x)):
    y = predict(network,x[i])
    p = np.argmax(y)
    if p == t[i]:
        accuracy_cnt +=1

print("Accuracy:"+str(float(accuracy_cnt)/len(x)))

上个for是一个个的检测,有点慢,采用批处理的形式会快一些。可以改成下面的形式。


batch_size = 100
for i in range(0,len(x),batch_size):
    x_batch = x[i:i+batch_size]
    y_batch = predict(network,x_batch)
    p = np.argmax(y_batch,axis=1)
    accuracy_cnt += np.sum( p == t[i:i+batch_size])

'''
>>> x = np.array([[0.1, 0.8, 0.1], [0.3, 0.1, 0.6],
... [0.2, 0.5, 0.3], [0.8, 0.1, 0.1]])
>>> y = np.argmax(x, axis=1)
>>> print(y)
[1 2 1 0]
'''

print("Accuracy:"+str(float(accuracy_cnt)/len(x)))

替换for循环之后的完整代码:

import os,sys
sys.path.append(os.pardir)
import numpy as np
from PIL import Image
import pickle
from dataset.mnist import load_mnist
from common.functions import sigmoid,softmax


def get_data():
    (x_train, t_train), (x_test, t_test) = load_mnist(flatten=True, normalize=True, one_hot_label=False)
    return x_test,t_test

def init_network():
    with open("sample_weight.pkl","rb") as f:
        network = pickle.load(f)

    return network


def predict(network,x): # x是要训练的数据,network是现成的网络 把现成的参数(偏执和权重)取过来
    W1,W2,W3 = network['W1'],network['W2'],network['W3']
    b1,b2,b3 = network['b1'],network['b2'],network['b3']
    a1 = np.dot(x,W1)+b1
    z1 = sigmoid(a1)  # 做一次非线性变换 
    a2 = np.dot(z1,W2)+b2
    z2 = sigmoid(a2)  # 做一次非线性变换 
    a3 = np.dot(z2,W3)+b3
    y = sigmoid(a3)   # 做一次非线性变换 
    return y  # y可以认为是概率矩阵


x,t = get_data()
network = init_network()
accuracy_cnt = 0

'''
for i in range(len(x)):
    y = predict(network,x[i])
    p = np.argmax(y)
    if p == t[i]:
        accuracy_cnt +=1
'''


batch_size = 100  #batch 是批处理的意思
for i in range(0,len(x),batch_size):
    x_batch = x[i:i+batch_size]
    y_batch = predict(network,x_batch)
    p = np.argmax(y_batch,axis=1)
    accuracy_cnt += np.sum( p == t[i:i+batch_size])

'''
>>> x = np.array([[0.1, 0.8, 0.1], [0.3, 0.1, 0.6],
... [0.2, 0.5, 0.3], [0.8, 0.1, 0.1]])
>>> y = np.argmax(x, axis=1)
>>> print(y)
[1 2 1 0]
'''


print("Accuracy:"+str(float(accuracy_cnt)/len(x)))

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 深度学习是一种机器学习技术,可以通过模拟人类大脑的神经网络结构来实现智能决策和预测。Python是一种广泛使用的编程语言,也是深度学习中使用最多的语言之一。 如果你想入门深度学习并使用Python进行实现,可以参考一些经典的教材和资源,例如《Python深度学习》(Francois Chollet著)、《深度学习入门:基于Python理论实现》(斋藤康毅著)等。这些教材通常会介绍深度学习的基础理论Python的基本语法和深度学习框架(如TensorFlow、Keras等)的使用方法,同时也会提供一些实例代码练习题帮助你快速上手。 此外,你也可以通过在线课程和MOOC平台学习深度学习Python编程。例如,Coursera、Udacity和edX等平台都提供了相关课程,可以根据自己的需求和兴趣进行选择。 ### 回答2: 深度学习入门:基于Python理论实现,是一本介绍深度学习的较为全面的教程。本书主要介绍了人工神经网络,包括基于反向传播算法的多层感知器、卷积神经网络、循环神经网络等基本模型以及它们的实现方法,同时还介绍了一些高级话题,如深度强化学习、生成模型等等。 在本书中,作者通过大量的编程实例来演示深度学习的应用。这些实例包括用深度学习算法进行手写数字识别、图像分类、语音识别和自然语言处理等任务。由于Python是目前流行的机器学习工具之一,因此这本书的实现过程都使用了Python编程语言。 具体来说,本书的主要内容包括人工神经网络基础知识、多层感知器模型、卷积神经网络模型、循环神经网络模型、生成模型、 强化学习、深度学习框架等方面,同时还包括很多深度学习的应用案例。作者采用了基础理论、数学公式、实例程序和实验数据等不同形式的阐释方法,使读者既能够理解深度学习的基本原理,也能够掌握它的实现方法。 此外,本书还提供了大量的参考文献和网上资源,使读者可以进一步深入学习和研究深度学习。在阅读本书的同时,读者可以根据作者提供的代码和数据,通过实际操作来进一步巩固理论知识和应用技能。 总之,深度学习入门:基于Python理论实现是一本非常实用的深度学习教材,可以帮助初学者更好地了解深度学习的基本概念和方法,提高实际应用的技能。 ### 回答3: 深度学习是一种人工智能技术,可用于训练计算机识别和理解大量数据。《深度学习入门:基于Python理论实现》这本书是入门者学习深度学习的必读之书。以下是本书的内容概述。 本书的第一部分介绍了深度学习的基础概念和理论,包括神经网络、反向传播算法、损失函数等。介绍了基本的深度学习模型,如前馈神经网络、卷积神经网络和循环神经网络。此外,还介绍了优化算法和正则化技术。 在第二部分中,作者使用Python编程语言实现了各种深度学习模型,使用的是许多广泛使用的深度学习框架,如TensorFlow和PyTorch。学习者获得从头开始编写深度学习算法的经验,同时实际应用中必备的PyTorch和TensorFlow经验。 在第三部分中,本书涵盖了几个应用案例,包括图像分类、语音识别和自然语言处理。幸运的是,这些案例通过代码演示展示,确保即使您没有实际应用经验也能操作成功。 总的来说,《深度学习入门:基于Python理论实现》是一本适合想要学习深度学习的初学者的绝佳书籍。其提供了深度学习的基本理论和核心技术,同时应用Python编程语言演示了实现技术。由此学习者可以建立深度学习专业的技术栈和能力,在人工智能领域有更广阔的发展空间。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值