【源码】微分数字信号处理

在这里插入图片描述

DDSP: Differentiable Digital Signal Processing
Demos | Tutorials | Installation | Overview | Blog Post | Papers

DDSP是常见DSP函数(如合成器、波形整形器和滤波器等)的微分版本库。这允许这些可解释的元素被用作深度学习模型的一部分,尤其是作为音频生成的输出层。

DDSP is a library of differentiable versions of common DSP functions (such as synthesizers, waveshapers, and filters). This allows these interpretable elements to be used as part of an deep learning model, especially as the output layers for audio generation.

Getting Started
First, follow the steps in the Installation section to install the DDSP package and its dependencies. DDSP modules can be used to generate and manipulate audio from neural network outputs as in this simple example:

import ddsp

Get synthesizer parameters from a neural network.

outputs = network(inputs)

Initialize signal processors.

harmonic = ddsp.synths.Harmonic()

Generates audio from harmonic synthesizer.

audio = harmonic(outputs[‘amplitudes’],
outputs[‘harmonic_distribution’],
outputs[‘f0_hz’])
Links
Check out the blog post 💻

Read the original paper 📄

Listen to some examples 🔈Try out the timbre transfer dem

Tutorials
To introduce the main concepts of the library, we have step-by-step colab tutorials for all the major library components ddsp/colab/tutorials.

0_processor: Introduction to the Processor class.

1_synths_and_effects: Example usage of processors.

2_processor_group: Stringing processors together in a ProcessorGroup.

3_training: Example of training on a single sound.

4_core_functions: Extensive examples for most of the core DDSP functions.

Modules
The DDSP library consists of a core library (ddsp/) and a self-contained training library (ddsp/training/). The core library is split up into into several modules:

Core: All the differentiable DSP functions.

Processors: Base classes for Processor and ProcessorGroup.

Synths: Processors that generate audio from network outputs.

Effects: Processors that transform audio according to network outputs.

Losses: Loss functions relevant to DDSP applications.

Spectral Ops: Helper library of Fourier and related transforms.

Besides the tutorials, each module has its own test file that can be helpful for examples of usage.

更多精彩文章请关注公众号:在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值