条件期望,重期望,相关知识点

条件期望与重期望

条件期望的定义:

E ( x ∣ y ) = ∫ − ∞ ∞ x f ( x ∣ y ) d x E(x|y)=\int_{-\infty}^{\infty}xf(x|y)dx E(xy)=xf(xy)dx(连续)

E ( x ∣ y ) = ∑ i x i ρ ( X = x i ∣ Y = y i ) E(x|y)=\sum\limits_ix_i\rho(X=x_i|Y=y_i) E(xy)=ixiρ(X=xiY=yi)(离散)

重期望的性质

1. E ( E ( g ( x ) ∣ Y ) ) = ∫ − ∞ ∞ E ( g ( x ) ∣ Y ) f Y ( y ) d y 1.E(E(g(x)|Y))=\int_{-\infty}^{\infty}E(g(x)|Y)f_{Y}(y)dy 1.E(E(g(x)Y))=E(g(x)Y)fY(y)dy(注意积分,因为里面已经积分了 d x dx dx,外面是 d y dy dy)

= ∫ − ∞ ∞ [ ∫ − ∞ ∞ g ( x ) f ( x ∣ y ) d x ] f Y ( y ) d y \int_{-\infty}^{\infty}[\int_{-\infty}^{\infty}g(x)f(x|y)dx]f_{Y}(y)dy [g(x)f(xy)dx]fY(y)dy

= ∫ − ∞ ∞ ∫ − ∞ ∞ g ( x ) f ( x ∣ y ) f Y ( y ) d x d y \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}g(x)f(x|y)f_{Y}(y)dxdy g(x)f(xy)fY(y)dxdy

= ∫ − ∞ ∞ ∫ − ∞ ∞ g ( x ) f ( x ∣ y ) d x d y \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}g(x)f(x|y)dxdy g(x)f(xy)dxdy

= E ( g ( x ) ) E(g(x)) E(g(x))

2. E ( h ( y ) g ( x ) ∣ Y ) = ∫ − ∞ ∞ h ( y ) g ( x ) f ( x ∣ y ) d x 2.E(h(y)g(x)|Y)=\int_{-\infty}^{\infty}h(y)g(x)f(x|y)dx 2.E(h(y)g(x)Y)=h(y)g(x)f(xy)dx
= h ( y ) ∫ − ∞ ∞ g ( x ) f ( x ∣ y ) d x =h(y)\int_{-\infty}^{\infty}g(x)f(x|y)dx =h(y)g(x)f(xy)dx
= h ( y ) E ( g ( x ) ∣ Y ) h(y)E(g(x) | Y) h(y)E(g(x)Y)


期望在数理统计的相关知识点

均方误差:

MSE ⁡ ( θ ^ ) = E ( θ ^ − θ ) 2 = E [ ( θ ^ − E θ ^ ) + ( E θ ^ − θ ) ] 2 = E ( θ ^ − E θ ^ ) 2 + E ( E θ ^ − θ ) 2 + 2 E [ ( θ ^ − E θ ^ ) ( E θ ^ − θ ) ] = Var ⁡ ( θ ^ ) + ( E θ ^ − θ ) 2 \begin{array}{l} \operatorname{MSE}(\hat{\theta})=E(\hat{\theta}-\theta)^{2} \\ =E[(\hat{\theta}-E \hat{\theta})+(E \hat{\theta}-\theta)]^{2} \\ =E(\hat{\theta}-E \hat{\theta})^{2}+E(E \hat{\theta}-\theta)^{2}+2 E[(\hat{\theta}-E \hat{\theta})(E \hat{\theta}-\theta)] \\ =\operatorname{Var}(\hat{\theta})+(E \hat{\theta}-\theta)^{2} \end{array} MSE(θ^)=E(θ^θ)2=E[(θ^Eθ^)+(Eθ^θ)]2=E(θ^Eθ^)2+E(Eθ^θ)2+2E[(θ^Eθ^)(Eθ^θ)]=Var(θ^)+(Eθ^θ)2

如果对任意一个满足 E ( φ ( X ) ) = 0 E(\varphi(X))=0 E(φ(X))=0 Var ⁡ ( θ ^ ) < ∞ . \operatorname{Var}(\hat{\theta})<\infty . Var(θ^)<. φ ( X ) , \varphi(X), φ(X), 都有
Cov ⁡ θ ( θ ^ , φ ) = 0 , ∀ θ ∈ Θ \operatorname{Cov}_{\theta}(\hat{\theta}, \varphi)=0, \quad \forall \theta \in \Theta Covθ(θ^,φ)=0,θΘ
θ ^ \hat{\theta} θ^ θ \theta θ 的UMVUE。
Cov ⁡ θ ( θ ^ , φ ) = 0 , ∀ θ ∈ Θ = E ( θ ^ φ ) − E θ ^ E φ ( E φ = 0 ) = E ( θ ^ φ ) \operatorname{Cov}_{\theta}(\hat{\theta}, \varphi)=0, \quad \forall \theta \in \Theta \\=E(\hat{\theta}\varphi)-E\hat{\theta}E\varphi(E\varphi=0) \\=E(\hat{\theta}\varphi) Covθ(θ^,φ)=0,θΘ=E(θ^φ)Eθ^Eφ(Eφ=0)=E(θ^φ)
x 1 x 2 , … , x n x_{1} x_{2}, \ldots, x_{n} x1x2,,xn 是来自指数分布 E x p Exp Exp(1/ θ ) \left.\theta\right) θ) 的样本,则 T = T= T= x 1 + … + X n x_{1}+\ldots+X_{n} x1++Xn θ \theta θ 的充分统计量, X ˉ = T / n \bar{X}=T / n \quad Xˉ=T/n θ \theta θ 的无偏估计

E φ = ∫ 0 ∞ ⋯ ∫ 0 ∞ φ ( x 1 , ⋯   , x n ) ⋅ 1 θ n e − ( x i + ⋯ + x n ) / θ d x 1 ⋯ d x n = 0 ∫ 0 ∞ ⋯ ∫ 0 ∞ φ ( x 1 , ⋯   , x n ) ⋅ e − ( x i + ⋯ + x n ) / θ d x 1 ⋯ d x n = 0 \begin{aligned} E \varphi=& \int_{0}^{\infty} \cdots \int_{0}^{\infty} \varphi\left(x_{1}, \cdots, x_{n}\right) \cdot \frac{1}{\theta^{n}} e^{-\left(x_{i}+\cdots+x_{n}\right) / \theta} \mathrm{d} x_{1} \cdots \mathrm{d} x_{n}=0 \\ & \int_{0}^{\infty} \cdots \int_{0}^{\infty} \varphi\left(x_{1}, \cdots, x_{n}\right) \cdot e^{-\left(x_{i}+\cdots+x_{n}\right) / \theta} \mathrm{d} x_{1} \cdots \mathrm{d} x_{n}=0 \end{aligned} Eφ=00φ(x1,,xn)θn1e(xi++xn)/θdx1dxn=000φ(x1,,xn)e(xi++xn)/θdx1dxn=0

两端对 θ \theta θ 求导得
∫ 0 ∞ ⋯ ∫ 0 ∞ n x ˉ θ 2 φ ( x 1 , ⋯   , x n ) ⋅ e − ( x i + ⋯ + x n ) / θ d x 1 ⋯ d x n = 0 \int_{0}^{\infty} \cdots \int_{0}^{\infty} \frac{n \bar{x}}{\theta^{2}} \varphi\left(x_{1}, \cdots, x_{n}\right) \cdot e^{-\left(x_{i}+\cdots+x_{n}\right) / \theta} \mathrm{d} x_{1} \cdots d x_{n}=0 00θ2nxˉφ(x1,,xn)e(xi++xn)/θdx1dxn=0

∫ 0 ∞ ⋯ ∫ 0 ∞ x ˉ φ ( x 1 , ⋯   , x n ) ⋅ e − ( x i + ⋯ + x n ) / θ d x 1 ⋯ d x n = 0 \int_{0}^{\infty} \cdots \int_{0}^{\infty} \bar{x} \varphi\left(x_{1}, \cdots, x_{n}\right) \cdot e^{-\left(x_{i}+\cdots+x_{n}\right) / \theta} \mathrm{d} x_{1} \cdots \mathrm{d} x_{n}=0 00xˉφ(x1,,xn)e(xi++xn)/θdx1dxn=0
这说明 E ( x ˉ ⋅ φ ) = 0 , E(\bar{x} \cdot \varphi)=0, \quad E(xˉφ)=0, 从而 Cov ⁡ ( x ˉ , φ ) = E ( x ˉ ⋅ φ ) − E ( x ˉ ) ⋅ E ( φ ) = 0 \operatorname{Cov}(\bar{x}, \varphi)=E(\bar{x} \cdot \varphi)-E(\bar{x}) \cdot E(\varphi)=0 Cov(xˉ,φ)=E(xˉφ)E(xˉ)E(φ)=0

  • 4
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值