多元线性回归

多元线性回归

y = [ y 1 y 2 ⋮ y n ] , X = [ 1 x 11 ⋯ x 1 p 1 x 21 ⋯ x 2 p ⋮ ⋮ ⋮ 1 x n 1 ⋯ x n p ] , ϵ = [ ϵ 1 ϵ 2 ⋮ ϵ n ] , β = [ β 0 β 1 ⋮ β p ] y=\left[\begin{array}{c} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{array}\right], X=\left[\begin{array}{cccc} 1 & x_{11} & \cdots & x_{1 p} \\ 1 & x_{21} & \cdots & x_{2 p} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n 1} & \cdots & x_{n p} \end{array}\right], \epsilon=\left[\begin{array}{c} \epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ \epsilon_{n} \end{array}\right], \beta=\left[\begin{array}{c} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{p} \end{array}\right] y=y1y2yn,X=111x11x21xn1x1px2pxnp,ϵ=ϵ1ϵ2ϵn,β=β0β1βp

y = X β + ε \boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\varepsilon y=Xβ+ε

X = ( 1 , x 1 , … , x p ) − − n × ( p + 1 ) \boldsymbol{X}=\left(\mathbf{1}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}\right)-- n \times(p+1) X=(1,x1,,xp)n×(p+1)

ε = ( ε 1 , … , ε n ) ′ \varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)^{\prime} ε=(ε1,,εn)

Gauss-Markov条件:
{ E ( ε i ) = 0 , i = 1 , … , n Cov ⁡ ( ε i , ε j ) = 0 , i ≠ j ; Var ⁡ ( ε i ) = σ 2 \left\{\begin{array}{l} E\left(\varepsilon_{i}\right)=0, i=1, \ldots, n \\ \operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=0, i \neq j ; \quad \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2} \end{array}\right. {E(εi)=0,i=1,,nCov(εi,εj)=0,i=j;Var(εi)=σ2

正态性假设:
{ ε i ∼ N ( 0 , σ 2 ) , i = 1 , … , n ε 1 , … , ε n  相互独立  \left\{\begin{array}{l} \varepsilon_{i} \sim N\left(0, \sigma^{2}\right), i=1, \ldots, n \\ \varepsilon_{1}, \ldots, \varepsilon_{n} \quad \text { 相互独立 } \end{array}\right. {εiN(0,σ2),i=1,,nε1,,εn 相互独立 

LSE

Q ( β ) = ( y − X β ) ′ ( y − X β ) Q(\boldsymbol{\beta})=(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}) Q(β)=(yXβ)(yXβ)

∂ Q ( β ) ∂ β = − X ′ 2 ( y − X β ) = − 2 X ′ ( y − X β ) = 0 \frac{\partial Q(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}}=-\boldsymbol{X}^{\prime} 2(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})=-2 \boldsymbol{X}^{\prime}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta})=0 βQ(β)=X2(yXβ)=2X(yXβ)=0

β ^ = ( X ′ X ) − 1 X ′ y \hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y} β^=(XX)1Xy

y ^ = X β ^ = X ( X ′ X ) − 1 X ′ y = def H y \hat{\boldsymbol{y}}=\boldsymbol{X} \hat{\boldsymbol{\beta}}=\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y} \stackrel{\text {def}}{=} \boldsymbol{H} \boldsymbol{y} y^=Xβ^=X(XX)1Xy=defHy

H = X ( X ′ X ) − 1 X ′ → H 2 = X ( X ′ X ) − 1 X ′ ∗ X ( X ′ X ) − 1 X ′ = X ( X ′ X ) − 1 X ′ = H H=X(X'X)^{-1}X'\rightarrow H^2=X(X'X)^{-1}X'*X(X'X)^{-1}X'=X(X'X)^{-1}X'=H H=X(XX)1XH2=X(XX)1XX(XX)1X=X(XX)1X=H

( I n − H ) 2 = I n 2 − 2 H I n + H 2 = I n − H (I_n-H)^2=I_n^2-2HI_n+H^2=I_n-H (InH)2=In22HIn+H2=InH

Resid

e = y − y ^  为  y  的残差向量,将  y ^ = H y  代入  \boldsymbol{e}=\boldsymbol{y}-\hat{\boldsymbol{y}} \text { 为 } \boldsymbol{y} \text { 的残差向量,将 } \hat{\boldsymbol{y}}=\boldsymbol{H y} \text { 代入 } e=yy^  y 的残差向量,将 y^=Hy 代入 

e = y − H y = ( I − H ) y \boldsymbol{e}=\boldsymbol{y}-\boldsymbol{H} \boldsymbol{y}=(\boldsymbol{I}-\boldsymbol{H}) \boldsymbol{y} e=yHy=(IH)y

D ( e ) = Cov ⁡ ( e , e ) = Cov ⁡ ( ( I − H ) y , ( I − H ) y ) = ( I − H ) Cov ⁡ ( y , y ) ( I − H ) ′ = ( I − H ) σ 2 I ( I − H ) ′ = σ 2 ( I − H ) \begin{aligned} D(\boldsymbol{e}) &=\operatorname{Cov}(\boldsymbol{e}, \boldsymbol{e}) \\ &=\operatorname{Cov}((\boldsymbol{I}-\boldsymbol{H}) \boldsymbol{y},(\boldsymbol{I}-\boldsymbol{H}) \boldsymbol{y}) \\ &=(\boldsymbol{I}-\boldsymbol{H}) \operatorname{Cov}(\boldsymbol{y}, \boldsymbol{y})(\boldsymbol{I}-\boldsymbol{H})^{\prime} \\ &=(\boldsymbol{I}-\boldsymbol{H}) \sigma^{2} \boldsymbol{I}(\boldsymbol{I}-\boldsymbol{H})^{\prime} \\ &=\sigma^{2}(\boldsymbol{I}-\boldsymbol{H}) \end{aligned} D(e)=Cov(e,e)=Cov((IH)y,(IH)y)=(IH)Cov(y,y)(IH)=(IH)σ2I(IH)=σ2(IH)

Var ⁡ ( e i ) = ( 1 − h i i ) σ 2 , i = 1 , … , n \operatorname{Var}\left(e_{i}\right)=\left(1-h_{i i}\right) \sigma^{2}, i=1, \ldots, n Var(ei)=(1hii)σ2,i=1,,n

β ^ \hat{\beta} β^为无偏估计
E ( β ^ ) = E { ( X ′ X ) − 1 X ′ y } = ( X ′ X ) − 1 X ′ E y = ( X ′ X ) − 1 X ′ X β = β \begin{aligned} E(\hat{\boldsymbol{\beta}}) &=E\left\{\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{y}\right\} \\ &=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} E \boldsymbol{y} \\ &=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{\beta} \end{aligned} E(β^)=E{(XX)1Xy}=(XX)1XEy=(XX)1XXβ=β

D ( β ^ ) = σ 2 ( X ′ X ) − 1 D(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} D(β^)=σ2(XX)1


exer

P r o o f : σ ^ 2 = 1 n − p − 1 ∑ i = 1 n e i 2 = 1 n − p − 1 e ′ e Proof:\hat{\sigma}^{2}=\frac{1}{n-p-1} \sum_{i=1}^{n} e_{i}^{2}=\frac{1}{n-p-1} \boldsymbol{e}^{\prime} \boldsymbol{e} Proof:σ^2=np11i=1nei2=np11ee

E ( ∑ i = 1 n e i 2 ) = ∑ i = 1 n D ( e i ) E\left(\sum_{i=1}^{n} e_{i}^{2}\right)=\sum_{i=1}^{n} D\left(e_{i}\right) E(i=1nei2)=i=1nD(ei)

E ( ∑ i = 1 n e i 2 ) = ∑ i = 1 n D ( e i ) = ∑ i = 1 n σ 2 ( 1 − h i i ) = σ 2 ∑ i = 1 n ( 1 − h i i ) = σ 2 ( n − ∑ i = 1 n h i i ) = σ 2 ( n − p − 1 ) E\left(\sum_{i=1}^{n} e_{i}^{2}\right)=\sum_{i=1}^{n} D\left(e_{i}\right)=\sum_{i=1}^{n} \sigma^{2}\left(1-h_{i i}\right)=\sigma^{2} \sum_{i=1}^{n}\left(1-h_{i i}\right)=\sigma^{2}\left(n-\sum_{i=1}^{n} h_{i i}\right)=\sigma^{2}(n-p-1) E(i=1nei2)=i=1nD(ei)=i=1nσ2(1hii)=σ2i=1n(1hii)=σ2(ni=1nhii)=σ2(np1)


diag ⁡ ( H ) = ( h 11 , … , h n n ) tr ⁡ ( H ) = ∑ i = 1 n h i i = tr ⁡ ( X ( X ′ X ) − 1 X ′ ) = tr ⁡ ( ( X ′ X ) − 1 X ′ X ) = p + 1 \begin{array}{l} \operatorname{diag}(\boldsymbol{H})=\left(h_{11}, \ldots, h_{n n}\right) \\ \operatorname{tr}(H)=\sum_{i=1}^{n} h_{i i}=\operatorname{tr}\left(\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime}\right)=\operatorname{tr}\left(\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\prime} \boldsymbol{X}\right)=p+1 \end{array} diag(H)=(h11,,hnn)tr(H)=i=1nhii=tr(X(XX)1X)=tr((XX)1XX)=p+1

计 算 Cov ⁡ ( e , β ^ ) → σ ^ 2 与 β ^ 的 独 立 性 计算\operatorname{Cov}(\boldsymbol{e}, \hat{\boldsymbol{\beta}})\rightarrow \hat{\sigma}^{2} 与\hat{\beta}的独立性 Cov(e,β^)σ^2β^

cov ⁡ ( β ^ , e ) = cov ⁡ ( ( X T X ) − 1 X T y , ( I − H ) y ) = ( X T X ) − 1 X T cov ⁡ ( y , y ) ( I − H ) σ 2 ( X T X ) − 1 X T ( I − H ) = 0 \begin{array}{l} \operatorname{cov}(\hat{\beta}, e)=\operatorname{cov}\left(\left(X^{T} X\right)^{-1} X^{T} y,(I-H) y\right)=\left(X^{T} X\right)^{-1} X^{T} \operatorname{cov}(y, y)(I-H) \\ \sigma^{2}\left(X^{T} X\right)^{-1} X^{T}(I-H)=0 \end{array} cov(β^,e)=cov((XTX)1XTy,(IH)y)=(XTX)1XTcov(y,y)(IH)σ2(XTX)1XT(IH)=0

 这是因为最小二乘法  ( I − H ) X = 0  可以推出  X T ( I − H ) = 0 \text { 这是因为最小二乘法 }(I-H) X=0 \text { 可以推出 } X^{T}(I-H)=0  这是因为最小二乘法 (IH)X=0 可以推出 XT(IH)=0

在 正 态 分 布 假 定 下 , 对 一 元 线 性 回 归 模 型 , 构 造 假 设 检 验 H 0 : 2 β 0 = β 1  v.s.  H 1 : 2 β 0 ≠ β 1  的检验统计量 \begin{aligned} &在正态分布假定下,对一元线性回归模型,构造假设检验 H_{0}: 2 \beta_{0}=\beta_{1} \text { v.s. } H_{1}: 2 \beta_{0} \neq \beta_{1} \text { 的检验统计量} \end{aligned} 线H0:2β0=β1 v.s. H1:2β0=β1 的检验统计量


G − M G-M GM假设下,最小二乘估计 β ^ \hat{\boldsymbol{\beta}} β^与残差向量 e e e不相美,即 C o v ( β ^ , e ) = 0 Cov(\hat{\boldsymbol{\beta}}, \boldsymbol{e})=\mathbf{0} Cov(β^,e)=0 ,进一步,在正态假设下, β ^ \hat{\boldsymbol{\beta}} β^与e独立,从而 β ^ \hat{\boldsymbol{\beta}} β^ S S E = e ′ e = ∥ e ∥ 2 SSE =\mathbf{e}^{\prime} \mathbf{e}=\|\mathbf{e}\|^{2} SSE=ee=e2 独立


y ∼ N ( X β , σ 2 I n ) y \sim N\left(\boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}_{n}\right) yN(Xβ,σ2In) 时,则
( 1 ) β ^ ∼ N ( β , σ 2 ( X ′ X ) − 1 ) (1) \hat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \sigma^{2}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1}\right) (1)β^N(β,σ2(XX)1)

( 2 ) SSE ⁡ / σ 2 ∼ χ 2 ( n − p − 1 ) (2) \operatorname{SSE} / \sigma^{2} \sim \chi^{2}(n-p-1) (2)SSE/σ2χ2(np1)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值