拓扑习题

文章目录

HW1

1. 设 M 为正多面体,它的每个面有 p 个边,每个顶点是 q 个面的交点. 用Euler 定理 v − e + f = 2 , v − e + f = 2, ve+f=2,证明:
(a). 1 p + 1 q = 1 2 + 1 e \frac{1}{p}+\frac{1}{q}=\frac{1}{2}+\frac{1}{e} p1+q1=21+e1
(b). 由 (a) 证明正多面体只有 5 种.

2. 计算由立方体按下图中箭头粘合边并且对面两两粘合(即上表面和底面粘合,前表面和后表面粘合,左侧面和右侧面粘合)得到的商空间的Euler示性数

假设一个正多面体的每个面都是正 p p p边形,那么所有 F 个面一共就有 p ⋅ F p · F pF条边;每两条边拼在一起形成了一条棱,因而总的棱数就是 E = p F 2 E =\frac{pF}{2} E=2pF, F F F 就应该等于 2 ⋅ E / p 2 · E / p 2E/p
不妨再假设每个顶点处都汇集了 q q q 条棱,那么总的棱数似乎应有 q ⋅ V q · V qV个;但这样计算的话,每条棱都被重复算了两次,因而总的棱数实际上应该是 E = q ⋅ V / 2 E = q · V / 2 E=qV/2

HW3

1. T \mathcal{T} T X X X 上的拓扑,A 是 X X X 的一个子集,规定:
T ′ = { A ∪ U ∣ U ∈ T } ∪ { ∅ } \mathcal{T}^{\prime}=\{A \cup U \quad | U \in \mathcal{T}\} \cup\{\emptyset\} T={AUUT}{}
证明: T ′ \mathcal{T}^{\prime} T也是 X X X上的拓扑
2. 设集合 X = { a , b , c } X = \{a,b,c\} X={a,b,c}, 请给出 X X X上的所有可能的拓扑.

HW4

3. X X X是一个拓扑空间,则对于任意 A , B ⊂ X A,B\subset X A,BX 有:
(a). ( A ∩ B ) ∘ = A ∘ ∩ B ∘ (A \cap B)^{\circ}=A^{\circ} \cap B^{\circ} (AB)=AB
(b). A ∘ ∘ = A ∘ A^{\circ \circ}=A^{\circ} A=A
4. 证明:每一个离散拓扑空间都是可度量化的。( 提示:注意到离散拓扑空间的任意子集都是开集,要证明其可度量化,只需说明存在⼀个度量,使得空间的任意⼀个子集都可以表示成⼀些由该度量定义的开球的并.)

HW5

3. 度量空间的每个子集的导集是闭集.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值