条件分布
实际上,求条件期望就是在新的概率空间上进行计算,即,因此也继承了期望的所有性质
如果
,则E(X)=Eg(Y)
使用全概率公式,可以容易得到证明
理解,找到共性
正态分布的优良性质:正态分布的条件分布仍为正态分布
条件密度
公式的证明充分体现出微分法的优势
理解:对于固定的y,条件密度是x的函数且和f(x,y)只相差常数因子(充分理解这句话!!)
条件数学期望
m(y)=E(X|Y=y)是已知Y=y时X的数学期望,m(Y)是已知Y时X的条件数学期望
计算方法:要求条件数学期望E(X|Y),只需要先计算E(X|Y=y),然后将计算结果中的y替换成Y即可。其中最重要的公式重期望公式也就不难以理解EX=E(E(X|Y))
极值的分布
(186)非常清晰,此处略
关于次序统计量的初步研究,主要运用微分法