5天之后就要考射频通信原理了(不知学校哪个鬼才想的射频和通信一起考,正好我们赶上教改第一届)特整理知识点和公式以备复习。
信道
天线增益
G
G
G:
G
=
4
π
A
λ
2
,
A
>
>
λ
G=\frac{4\pi A}{\lambda^2},\quad A>>\lambda
G=λ24πA,A>>λ
其中
A
A
A表示天线有效面积。
接收功率
P
R
P_R
PR:
P
R
=
λ
2
P
T
G
T
G
R
16
π
2
d
2
P_R=\frac{\lambda^2 P_T G_T G_R}{16\pi^2 d^2}
PR=16π2d2λ2PTGTGR
其中
P
T
P_T
PT表示发射功率,
G
T
G_T
GT表示发射天线增益,
G
R
G_R
GR表示接收天线增益。
传播损耗
L
f
r
L_{fr}
Lfr:
L
f
r
=
P
T
P
R
=
16
π
2
d
2
λ
2
G
T
G
R
L_{fr}=\frac{P_T}{P_R}=\frac{16\pi^2 d^2}{\lambda^2 G_T G_R}
Lfr=PRPT=λ2GTGR16π2d2
信源的熵(每个发送符号
x
i
x_i
xi的平均信息量)
H
(
x
)
H(x)
H(x):
H
(
x
)
=
−
∑
i
=
1
n
P
(
x
i
)
log
2
P
(
x
i
)
H
(
x
∣
y
)
=
−
∑
j
=
1
m
P
(
y
j
)
∑
i
=
1
n
P
(
x
i
∣
y
j
)
log
2
P
(
x
i
∣
y
j
)
H(x)=-\sum_{i=1}^n{P(x_i)\log_2P(x_i)}\\ H(x|y)=-\sum_{j=1}^mP(y_j)\sum_{i=1}^n{P(x_i|y_j)\log_2P(x_i|y_j)}
H(x)=−i=1∑nP(xi)log2P(xi)H(x∣y)=−j=1∑mP(yj)i=1∑nP(xi∣yj)log2P(xi∣yj)
对于二进制,设
P
(
1
)
=
α
P(1)=\alpha
P(1)=α,则:
H
(
α
)
=
−
α
log
2
α
−
(
1
−
α
)
log
2
(
1
−
α
)
H(\alpha)=-\alpha\log_2\alpha-(1-\alpha)\log_2(1-\alpha)
H(α)=−αlog2α−(1−α)log2(1−α)
离散信道容量:
C
=
max
P
(
x
)
[
H
(
x
)
−
H
(
x
∣
y
)
]
(
b
/
符号
)
C
t
=
max
P
(
x
)
[
r
(
H
(
x
)
−
H
(
x
∣
y
)
)
]
(
b
/
s
)
C= \max \limits_{P(x)}[H(x)-H(x|y)] \quad (b/\text{符号})\\ C_t= \max \limits_{P(x)}[r(H(x)-H(x|y))] \quad (b/s)
C=P(x)max[H(x)−H(x∣y)](b/符号)Ct=P(x)max[r(H(x)−H(x∣y))](b/s)
其中
r
r
r为信道符号传输速率。
连续信道容量(香农公式):
C
t
=
B
log
2
(
1
+
S
N
)
(
b
/
s
)
C_t= B\log_2(1+\frac{S}{N}) \quad (b/s)
Ct=Blog2(1+NS)(b/s)
其中,
B
B
B表示带宽,
S
S
S表示信号平均功率,
N
N
N表示噪声平均功率。
设单边谱密度为
n
0
(
W
/
H
z
)
n_0\quad (W/Hz)
n0(W/Hz),由
N
=
n
0
B
N=n_0B
N=n0B可知:
C
t
=
B
log
2
(
1
+
S
n
0
)
(
b
/
s
)
C_t= B\log_2(1+\frac{S}{n_0}) \quad (b/s)
Ct=Blog2(1+n0S)(b/s)
数字基带传输系统
无码间串扰时域条件:
h
(
k
T
B
)
=
{
1
k
=
0
0
k
为其它整数
h(kT_B)=\left\{ \begin{aligned} 1\quad &k=0 \\ 0 \quad &k\text{为其它整数} \end{aligned}\right.
h(kTB)={10k=0k为其它整数
其中
T
B
T_B
TB为码元持续时间。
无码间串扰频域条件:
∑
i
H
(
ω
+
2
π
i
T
B
)
=
T
B
∣
ω
∣
≤
π
T
B
\sum_i H(\omega+\frac{2\pi i}{T_B})=T_B\quad |\omega|\leq\frac{\pi}{T_B}
i∑H(ω+TB2πi)=TB∣ω∣≤TBπ
理想低通滤波器无码间串扰此时满足奈奎斯特第一准则:
带宽不超过奈奎斯特带宽
B
≤
f
N
=
1
2
T
B
B\le f_N=\frac{1}{2T_B}
B≤fN=2TB1,最高频带利用率
η
=
R
B
B
=
2
\eta=\frac{R_B}{B}=2
η=BRB=2
滚降系数:
α
=
f
Δ
f
N
∈
[
0
,
1
]
\alpha=\frac{f_\Delta}{f_N}\in[0,1]
α=fNfΔ∈[0,1]
当
α
=
0
\alpha=0
α=0时为理想低通,拖尾最严重;
当
α
=
1
\alpha=1
α=1时拖尾最轻微,但是频带占用多了一倍。
余弦滚降系统的最高频带利用率为:
η
=
R
B
B
=
2
1
=
α
\eta=\frac{R_B}{B}=\frac{2}{1=\alpha}
η=BRB=1=α2
误差函数
erf
(
x
)
\text{erf}(x)
erf(x):
erf
(
x
)
=
2
π
∫
0
x
e
−
t
2
d
t
\text{erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^xe^{-t^2}dt
erf(x)=π2∫0xe−t2dt
互补误差函数
erfc
(
x
)
\text{erfc}(x)
erfc(x):
erf
(
x
)
=
1
−
erf
(
x
)
=
2
π
∫
x
+
∞
e
−
t
2
d
t
\text{erf}(x)=1-\text{erf}(x)=\frac{2}{\sqrt{\pi}}\int_x^{+\infty} e^{-t^2}dt
erf(x)=1−erf(x)=π2∫x+∞e−t2dt
高斯积分:
∫
−
∞
+
∞
e
−
t
2
=
π
\int_{-\infty}^{+\infty}e^{-t^2}=\sqrt{\pi}
∫−∞+∞e−t2=π
截尾函数
Q
(
x
)
Q(x)
Q(x):
Q
(
x
)
=
1
2
π
∫
x
+
∞
e
−
t
2
d
t
x
>
0
Q(x)=\frac{1}{\sqrt{2\pi}}\int_x^{+\infty} e^{-t^2}dt \quad x>0
Q(x)=2π1∫x+∞e−t2dtx>0
有以下关系成立:
P
(
t
>
x
)
=
Q
(
x
−
μ
σ
)
Q
(
x
)
=
1
2
erfc
(
x
2
)
erfc
(
x
)
=
2
Q
(
2
x
)
P(t>x)=Q(\frac{x-\mu}{\sigma})\\ Q(x)=\frac{1}{2}\text{erfc}(\frac{x}{\sqrt{2}})\\ \text{erfc}(x)=2Q(\sqrt{2}x)
P(t>x)=Q(σx−μ)Q(x)=21erfc(2x)erfc(x)=2Q(2x)
二进制双极性基带传输系统
发1时电平为
+
A
+A
+A,发0时电平为
−
A
-A
−A,噪声为加性高斯噪声。
最佳门限电平
V
d
V_d
Vd:
V
d
=
σ
2
2
A
ln
P
(
0
)
P
(
1
)
V_d=\frac{\sigma^2}{2A}\ln\frac{P(0)}{P(1)}
Vd=2Aσ2lnP(1)P(0)
当
P
(
0
)
=
P
(
1
)
=
1
2
P(0)=P(1)=\frac{1}{2}
P(0)=P(1)=21时,系统误码率为
P
e
P_e
Pe:
P
e
=
1
2
erfc
(
A
2
σ
)
P_e=\frac{1}{2}\text{erfc}(\frac{A}{\sqrt{2}\sigma})
Pe=21erfc(2σA)
二进制单极性基带传输系统
发1时电平为
+
A
+A
+A,发0时电平为
0
0
0,噪声为加性高斯噪声。
最佳门限电平
V
d
V_d
Vd:
V
d
=
A
2
+
σ
2
A
ln
P
(
0
)
P
(
1
)
V_d=\frac{A}{2}+\frac{\sigma^2}{A}\ln\frac{P(0)}{P(1)}
Vd=2A+Aσ2lnP(1)P(0)
当
P
(
0
)
=
P
(
1
)
=
1
2
P(0)=P(1)=\frac{1}{2}
P(0)=P(1)=21时,系统误码率为
P
e
P_e
Pe:
P
e
=
1
2
erfc
(
A
2
2
σ
)
P_e=\frac{1}{2}\text{erfc}(\frac{A}{2\sqrt{2}\sigma})
Pe=21erfc(22σA)
数字带通传输系统
2ASK:二进制振幅键控
2FSK:二进制频移键控
2PSK:二进制相移键控
2DPSK:二进制差分相移键控
带宽关系:
B
2
A
S
K
=
2
f
B
=
2
R
B
=
B
2
D
P
S
K
B
2
F
S
K
=
∣
f
2
−
f
1
∣
+
2
f
B
B_{2ASK}=2f_B=2R_B=B_{2DPSK}\\ B_{2FSK}=|f_2-f_1|+2f_B
B2ASK=2fB=2RB=B2DPSKB2FSK=∣f2−f1∣+2fB
码变换:
b
n
=
a
n
⊕
b
n
−
1
b_n=a_n\oplus b_{n-1}
bn=an⊕bn−1
码反变换:
a
n
=
b
n
⊕
b
n
−
1
a_n=b_n\oplus b_{n-1}
an=bn⊕bn−1
2ASK相干解调
最佳门限
V
V
V:
V
=
a
2
+
σ
2
a
ln
P
(
0
)
P
(
1
)
V=\frac{a}{2}+\frac{\sigma^2}{a}\ln \frac{P(0)}{P(1)}
V=2a+aσ2lnP(1)P(0)
误码率
P
e
P_e
Pe:
P
e
=
1
2
erfc
(
a
2
2
σ
)
=
1
2
erfc
(
r
4
)
P_e=\frac{1}{2}\text{erfc}(\frac{a}{2\sqrt{2}\sigma})=\frac{1}{2}\text{erfc}(\sqrt{\frac{r}{4}})
Pe=21erfc(22σa)=21erfc(4r)
当信噪比
r
=
a
2
2
σ
2
>
>
1
r=\frac{a^2}{2\sigma^2}>>1
r=2σ2a2>>1时,有:
P
e
=
1
π
r
e
−
r
4
P_e=\frac{1}{\sqrt{\pi r}}e^{-\frac{r}{4}}
Pe=πr1e−4r
2ASK包络检波
当信噪比
r
=
a
2
2
σ
2
>
>
1
r=\frac{a^2}{2\sigma^2}>>1
r=2σ2a2>>1时,有:
最佳门限
V
V
V:
V
=
a
2
V=\frac{a}{2}
V=2a
误码率
P
e
P_e
Pe:
P
e
=
1
4
erfc
(
r
4
)
+
1
2
e
−
r
4
P_e=\frac{1}{4}\text{erfc}(\sqrt{\frac{r}{4}})+\frac{1}{2}e^{-\frac{r}{4}}
Pe=41erfc(4r)+21e−4r
2FSK相干解调
误码率
P
e
P_e
Pe:
P
e
=
1
2
erfc
(
r
2
)
P_e=\frac{1}{2}\text{erfc}(\frac{\sqrt{r}}{2})
Pe=21erfc(2r)
当信噪比
r
=
a
2
2
σ
2
>
>
1
r=\frac{a^2}{2\sigma^2}>>1
r=2σ2a2>>1时,有:
P
e
=
1
2
π
r
e
−
r
2
P_e=\frac{1}{\sqrt{2\pi r}}e^{-\frac{r}{2}}
Pe=2πr1e−2r
2FSK包络检波
当信噪比
r
=
a
2
2
σ
2
>
>
1
r=\frac{a^2}{2\sigma^2}>>1
r=2σ2a2>>1时,有:
误码率
P
e
P_e
Pe:
P
e
=
1
2
e
−
r
2
P_e=\frac{1}{2}e^{-\frac{r}{2}}
Pe=21e−2r
2PSK相干解调
误码率
P
e
P_e
Pe:
P
e
=
1
2
erfc
(
r
)
P_e=\frac{1}{2}\text{erfc}(\sqrt{r})
Pe=21erfc(r)
当信噪比
r
=
a
2
2
σ
2
>
>
1
r=\frac{a^2}{2\sigma^2}>>1
r=2σ2a2>>1时,有:
P
e
=
1
2
π
r
e
−
r
P_e=\frac{1}{2\sqrt{\pi r}}e^{-r}
Pe=2πr1e−r
2DPSK相干解调
误码率
P
e
′
P_e'
Pe′:
P
e
′
=
1
2
(
1
−
erfc
(
r
)
)
2
P'_e=\frac{1}{2}(1-\text{erfc}(\sqrt{r}))^2
Pe′=21(1−erfc(r))2
当信噪比
r
=
a
2
2
σ
2
>
>
1
r=\frac{a^2}{2\sigma^2}>>1
r=2σ2a2>>1时,有:
P
e
′
=
2
P
e
P'_e=2P_e
Pe′=2Pe
2DPSK差分相干解调
当信噪比
r
=
a
2
2
σ
2
>
>
1
r=\frac{a^2}{2\sigma^2}>>1
r=2σ2a2>>1时,有:
P
e
=
1
2
e
−
r
P_e=\frac{1}{2}e^{-r}
Pe=21e−r
相同信噪比下,相干解调的2PSK误码率最小。
不知其然也不知其所以然,背下来考试用到就行(卑微)
求一键三连 ↓ ↓ ↓ \downarrow\downarrow\downarrow ↓↓↓