信道容量、数字基带与带通传输系统误码率公式整理

本文总结了射频通信原理考试要点,包括天线增益、接收功率公式、信道容量、数字基带传输系统特性(如2ASK、2FSK、2PSK等)及其误码率计算。适合临考前快速复习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

5天之后就要考射频通信原理了(不知学校哪个鬼才想的射频和通信一起考,正好我们赶上教改第一届)特整理知识点和公式以备复习。

信道

天线增益 G G G
G = 4 π A λ 2 , A > > λ G=\frac{4\pi A}{\lambda^2},\quad A>>\lambda G=λ24πA,A>>λ
其中 A A A表示天线有效面积

接收功率 P R P_R PR
P R = λ 2 P T G T G R 16 π 2 d 2 P_R=\frac{\lambda^2 P_T G_T G_R}{16\pi^2 d^2} PR=16π2d2λ2PTGTGR
其中 P T P_T PT表示发射功率 G T G_T GT表示发射天线增益 G R G_R GR表示接收天线增益

传播损耗 L f r L_{fr} Lfr
L f r = P T P R = 16 π 2 d 2 λ 2 G T G R L_{fr}=\frac{P_T}{P_R}=\frac{16\pi^2 d^2}{\lambda^2 G_T G_R} Lfr=PRPT=λ2GTGR16π2d2

信源的熵(每个发送符号 x i x_i xi的平均信息量) H ( x ) H(x) H(x)
H ( x ) = − ∑ i = 1 n P ( x i ) log ⁡ 2 P ( x i ) H ( x ∣ y ) = − ∑ j = 1 m P ( y j ) ∑ i = 1 n P ( x i ∣ y j ) log ⁡ 2 P ( x i ∣ y j ) H(x)=-\sum_{i=1}^n{P(x_i)\log_2P(x_i)}\\ H(x|y)=-\sum_{j=1}^mP(y_j)\sum_{i=1}^n{P(x_i|y_j)\log_2P(x_i|y_j)} H(x)=i=1nP(xi)log2P(xi)H(xy)=j=1mP(yj)i=1nP(xiyj)log2P(xiyj)
对于二进制,设 P ( 1 ) = α P(1)=\alpha P(1)=α,则:
H ( α ) = − α log ⁡ 2 α − ( 1 − α ) log ⁡ 2 ( 1 − α ) H(\alpha)=-\alpha\log_2\alpha-(1-\alpha)\log_2(1-\alpha) H(α)=αlog2α(1α)log2(1α)

离散信道容量
C = max ⁡ P ( x ) [ H ( x ) − H ( x ∣ y ) ] ( b / 符号 ) C t = max ⁡ P ( x ) [ r ( H ( x ) − H ( x ∣ y ) ) ] ( b / s ) C= \max \limits_{P(x)}[H(x)-H(x|y)] \quad (b/\text{符号})\\ C_t= \max \limits_{P(x)}[r(H(x)-H(x|y))] \quad (b/s) C=P(x)max[H(x)H(xy)](b/符号)Ct=P(x)max[r(H(x)H(xy))](b/s)
其中 r r r为信道符号传输速率。

连续信道容量(香农公式):
C t = B log ⁡ 2 ( 1 + S N ) ( b / s ) C_t= B\log_2(1+\frac{S}{N}) \quad (b/s) Ct=Blog2(1+NS)(b/s)
其中, B B B表示带宽 S S S表示信号平均功率 N N N表示噪声平均功率
单边谱密度 n 0 ( W / H z ) n_0\quad (W/Hz) n0(W/Hz),由 N = n 0 B N=n_0B N=n0B可知:
C t = B log ⁡ 2 ( 1 + S n 0 ) ( b / s ) C_t= B\log_2(1+\frac{S}{n_0}) \quad (b/s) Ct=Blog2(1+n0S)(b/s)

数字基带传输系统

无码间串扰时域条件
h ( k T B ) = { 1 k = 0 0 k 为其它整数 h(kT_B)=\left\{ \begin{aligned} 1\quad &k=0 \\ 0 \quad &k\text{为其它整数} \end{aligned}\right. h(kTB)={10k=0k为其它整数
其中 T B T_B TB码元持续时间

无码间串扰频域条件
∑ i H ( ω + 2 π i T B ) = T B ∣ ω ∣ ≤ π T B \sum_i H(\omega+\frac{2\pi i}{T_B})=T_B\quad |\omega|\leq\frac{\pi}{T_B} iH(ω+TB2πi)=TBωTBπ

理想低通滤波器无码间串扰此时满足奈奎斯特第一准则
带宽不超过奈奎斯特带宽 B ≤ f N = 1 2 T B B\le f_N=\frac{1}{2T_B} BfN=2TB1最高频带利用率 η = R B B = 2 \eta=\frac{R_B}{B}=2 η=BRB=2

滚降系数:
α = f Δ f N ∈ [ 0 , 1 ] \alpha=\frac{f_\Delta}{f_N}\in[0,1] α=fNfΔ[0,1]
α = 0 \alpha=0 α=0时为理想低通,拖尾最严重;
α = 1 \alpha=1 α=1时拖尾最轻微,但是频带占用多了一倍。
余弦滚降系统的最高频带利用率为:
η = R B B = 2 1 = α \eta=\frac{R_B}{B}=\frac{2}{1=\alpha} η=BRB=1=α2

误差函数 erf ( x ) \text{erf}(x) erf(x)
erf ( x ) = 2 π ∫ 0 x e − t 2 d t \text{erf}(x)=\frac{2}{\sqrt{\pi}}\int_0^xe^{-t^2}dt erf(x)=π 20xet2dt
互补误差函数 erfc ( x ) \text{erfc}(x) erfc(x)
erf ( x ) = 1 − erf ( x ) = 2 π ∫ x + ∞ e − t 2 d t \text{erf}(x)=1-\text{erf}(x)=\frac{2}{\sqrt{\pi}}\int_x^{+\infty} e^{-t^2}dt erf(x)=1erf(x)=π 2x+et2dt
高斯积分
∫ − ∞ + ∞ e − t 2 = π \int_{-\infty}^{+\infty}e^{-t^2}=\sqrt{\pi} +et2=π
截尾函数 Q ( x ) Q(x) Q(x)
Q ( x ) = 1 2 π ∫ x + ∞ e − t 2 d t x > 0 Q(x)=\frac{1}{\sqrt{2\pi}}\int_x^{+\infty} e^{-t^2}dt \quad x>0 Q(x)=2π 1x+et2dtx>0
有以下关系成立:
P ( t > x ) = Q ( x − μ σ ) Q ( x ) = 1 2 erfc ( x 2 ) erfc ( x ) = 2 Q ( 2 x ) P(t>x)=Q(\frac{x-\mu}{\sigma})\\ Q(x)=\frac{1}{2}\text{erfc}(\frac{x}{\sqrt{2}})\\ \text{erfc}(x)=2Q(\sqrt{2}x) P(t>x)=Q(σxμ)Q(x)=21erfc(2 x)erfc(x)=2Q(2 x)

二进制双极性基带传输系统
发1时电平为 + A +A +A,发0时电平为 − A -A A,噪声为加性高斯噪声。
最佳门限电平 V d V_d Vd
V d = σ 2 2 A ln ⁡ P ( 0 ) P ( 1 ) V_d=\frac{\sigma^2}{2A}\ln\frac{P(0)}{P(1)} Vd=2Aσ2lnP(1)P(0)
P ( 0 ) = P ( 1 ) = 1 2 P(0)=P(1)=\frac{1}{2} P(0)=P(1)=21时,系统误码率 P e P_e Pe
P e = 1 2 erfc ( A 2 σ ) P_e=\frac{1}{2}\text{erfc}(\frac{A}{\sqrt{2}\sigma}) Pe=21erfc(2 σA)

二进制单极性基带传输系统
发1时电平为 + A +A +A,发0时电平为 0 0 0,噪声为加性高斯噪声。
最佳门限电平 V d V_d Vd
V d = A 2 + σ 2 A ln ⁡ P ( 0 ) P ( 1 ) V_d=\frac{A}{2}+\frac{\sigma^2}{A}\ln\frac{P(0)}{P(1)} Vd=2A+Aσ2lnP(1)P(0)
P ( 0 ) = P ( 1 ) = 1 2 P(0)=P(1)=\frac{1}{2} P(0)=P(1)=21时,系统误码率 P e P_e Pe
P e = 1 2 erfc ( A 2 2 σ ) P_e=\frac{1}{2}\text{erfc}(\frac{A}{2\sqrt{2}\sigma}) Pe=21erfc(22 σA)

数字带通传输系统

2ASK:二进制振幅键控
2FSK:二进制频移键控
2PSK:二进制相移键控
2DPSK:二进制差分相移键控
带宽关系
B 2 A S K = 2 f B = 2 R B = B 2 D P S K B 2 F S K = ∣ f 2 − f 1 ∣ + 2 f B B_{2ASK}=2f_B=2R_B=B_{2DPSK}\\ B_{2FSK}=|f_2-f_1|+2f_B B2ASK=2fB=2RB=B2DPSKB2FSK=f2f1+2fB
码变换
b n = a n ⊕ b n − 1 b_n=a_n\oplus b_{n-1} bn=anbn1
码反变换
a n = b n ⊕ b n − 1 a_n=b_n\oplus b_{n-1} an=bnbn1

2ASK相干解调
最佳门限 V V V
V = a 2 + σ 2 a ln ⁡ P ( 0 ) P ( 1 ) V=\frac{a}{2}+\frac{\sigma^2}{a}\ln \frac{P(0)}{P(1)} V=2a+aσ2lnP(1)P(0)
误码率 P e P_e Pe
P e = 1 2 erfc ( a 2 2 σ ) = 1 2 erfc ( r 4 ) P_e=\frac{1}{2}\text{erfc}(\frac{a}{2\sqrt{2}\sigma})=\frac{1}{2}\text{erfc}(\sqrt{\frac{r}{4}}) Pe=21erfc(22 σa)=21erfc(4r )
当信噪比 r = a 2 2 σ 2 > > 1 r=\frac{a^2}{2\sigma^2}>>1 r=2σ2a2>>1时,有:
P e = 1 π r e − r 4 P_e=\frac{1}{\sqrt{\pi r}}e^{-\frac{r}{4}} Pe=πr 1e4r
2ASK包络检波
当信噪比 r = a 2 2 σ 2 > > 1 r=\frac{a^2}{2\sigma^2}>>1 r=2σ2a2>>1时,有:
最佳门限 V V V
V = a 2 V=\frac{a}{2} V=2a
误码率 P e P_e Pe
P e = 1 4 erfc ( r 4 ) + 1 2 e − r 4 P_e=\frac{1}{4}\text{erfc}(\sqrt{\frac{r}{4}})+\frac{1}{2}e^{-\frac{r}{4}} Pe=41erfc(4r )+21e4r

2FSK相干解调
误码率 P e P_e Pe
P e = 1 2 erfc ( r 2 ) P_e=\frac{1}{2}\text{erfc}(\frac{\sqrt{r}}{2}) Pe=21erfc(2r )
当信噪比 r = a 2 2 σ 2 > > 1 r=\frac{a^2}{2\sigma^2}>>1 r=2σ2a2>>1时,有:
P e = 1 2 π r e − r 2 P_e=\frac{1}{\sqrt{2\pi r}}e^{-\frac{r}{2}} Pe=2πr 1e2r
2FSK包络检波
当信噪比 r = a 2 2 σ 2 > > 1 r=\frac{a^2}{2\sigma^2}>>1 r=2σ2a2>>1时,有:
误码率 P e P_e Pe
P e = 1 2 e − r 2 P_e=\frac{1}{2}e^{-\frac{r}{2}} Pe=21e2r

2PSK相干解调
误码率 P e P_e Pe
P e = 1 2 erfc ( r ) P_e=\frac{1}{2}\text{erfc}(\sqrt{r}) Pe=21erfc(r )
当信噪比 r = a 2 2 σ 2 > > 1 r=\frac{a^2}{2\sigma^2}>>1 r=2σ2a2>>1时,有:
P e = 1 2 π r e − r P_e=\frac{1}{2\sqrt{\pi r}}e^{-r} Pe=2πr 1er

2DPSK相干解调
误码率 P e ′ P_e' Pe
P e ′ = 1 2 ( 1 − erfc ( r ) ) 2 P'_e=\frac{1}{2}(1-\text{erfc}(\sqrt{r}))^2 Pe=21(1erfc(r ))2
当信噪比 r = a 2 2 σ 2 > > 1 r=\frac{a^2}{2\sigma^2}>>1 r=2σ2a2>>1时,有:
P e ′ = 2 P e P'_e=2P_e Pe=2Pe

2DPSK差分相干解调
当信噪比 r = a 2 2 σ 2 > > 1 r=\frac{a^2}{2\sigma^2}>>1 r=2σ2a2>>1时,有:
P e = 1 2 e − r P_e=\frac{1}{2}e^{-r} Pe=21er

相同信噪比下,相干解调的2PSK误码率最小。


不知其然也不知其所以然,背下来考试用到就行(卑微)


求一键三连 ↓ ↓ ↓ \downarrow\downarrow\downarrow

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值