MATLAB PDE工具箱电磁场仿真平行电容板及电偶极子详解

本文介绍了如何利用Matlab的PDE工具箱模拟静电场问题,包括设置求解区域、边界条件以及编辑偏微分方程。通过实例展示了电容板和电偶极子的电场分布,解释了拉普拉斯方程的应用,并探讨了等势线和电场强度的特征。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先打开matlab,在命令行输入pdetool打开PDE工具箱
在这里插入图片描述
工具箱的功能我就不赘述了,大概就是以有限元的数值计算方法,计算二阶偏微分方程,因此可以解决电磁场、热力学等问题。

首先点击左上角按钮,画三个矩形
在这里插入图片描述
画完一个后可以双击矩形编辑,参数如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
其中R1表示上极板,R2表示下极板,R3表示整个空间区域。
在这里插入图片描述
在上方Set formula为R3-R2-R1,表示求解区域是整个空间区域减去两个极板。下拉框选择Electrostatics表示求解的是静电场问题。
接下来点击上方菜单栏中的这个按钮,表示编辑边界条件。
在这里插入图片描述
在这里插入图片描述
红色线表狄利克雷边界,按住shift连续点击上极板的四个边界(选中会变黑)最后双击,可以打开边界编辑框。
在这里插入图片描述
选择狄利克雷边界(第一类边界条件,给定边界的值)
上面是纽曼边界(第二类边界条件,给定边界的导数值)
此外还有混合边界(混合第一第二类的情况)
权重h设置为1,上极板电位设置为5v。

重复上述步骤,将R2的四个边界电位设置为-5v,R3的四个边界电位设置为0v(表示无穷远处电位为0)

点击上方菜单栏中的PDE按钮,可以看到计算公式,默认是泊松方程,就是电磁场里面很熟悉的:
∇ ⋅ E = ρ ϵ \nabla\cdot E=\frac{\rho}{\epsilon} E=ϵρ
E = ∇ v E=\nabla v E=v

不过我们研究的区域没有电荷源(或者认为两个电容板带电大小相等极性相反,抵消了),于是设置rho=0,等式变为了拉普拉斯方程,即
∇ 2 v = 0 \nabla^2v=0 2v=0

在这里插入图片描述

随后点一下上方菜单里的三角(下图红圈内的),可以将求解区域用有限元划分,然后点击若干次加密三角(下图蓝圈内的),可以把求解区域进一步细分,分的越细,精度越高、速度越慢。
在这里插入图片描述
在这里插入图片描述

最后点击右边那个等号,进行求解,得出电场分布图如下:
在这里插入图片描述
红色箭头是电场强度矢量,黑色一圈圈的线是等势线,颜色代表电位高低。可以看到在两个极板中间,可以近似认为是均匀电场,等势线平行分布。
菜单栏里面长得像matlab图标的那个按钮,是绘图参数
在这里插入图片描述
左侧可以显示颜色、等势线、场强箭头等设置。
在Mesh和Solve中可以将结果导出,分别是网格划分结果和对应的计算电位值(但是我不知道怎么用),在File里面可以把当前画的图导出,不过不能导出成fig
在这里插入图片描述

电偶极子仿真跟上述类似。两个相距很近的带等量异号电荷的点电荷为电偶极子。首先先画出这两个(近似)点电荷E1和E2,圆半径为0.05,y位置均为0,x位置分别为-0.1和+0.1。最后别忘了构造整个空间区域R1,并设置求解区域为R1-E1-E2
示例E1的参数如图:
在这里插入图片描述
边界条件设置E1电位5v,E2电位-5v,边界为0v。
细分网格,如下图所示
在这里插入图片描述
有那么一点吓人……
其余设置同上,记得要调整为拉普拉斯方程,求解结果如下图

在这里插入图片描述
如上图所示,电偶极子的等势面在两个电荷之间非常密集,而在这之外变得比较稀疏、且对称。可以发现在远场处,左右等势面合并可以近似为一个圆,这暗示我们可以将电偶极子当做一个特殊的电荷处理。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值