分类算法-决策树、随机森林

一、认识决策树

决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法
32支球队,log32=5比特
64支球队,log64=6比特
信息熵:
“谁是世界杯冠军”的信息量应该比5比特少。香农指出,它的准确信息量应该是:
H = -(p1logp1 + p2logp2 + … + p32log32)
H的专业术语称之为信息熵,单位为比特。
公式:
在这里插入图片描述

当这32支球队夺冠的几率相同时,对应的信息熵等于5比特

信息增益

特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差,即公式为:
在这里插入图片描述
注:信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度
在这里插入图片描述

在这里插入图片描述
常见决策树使用的算法:
ID3
信息增益 最大的准则
C4.5
信息增益比 最大的准则
CART
回归树: 平方误差 最小
分类树: 基尼系数 最小的准则 在sklearn中可以选择划分的原则

二、sklearn决策树API

class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,random_state=None)
决策树分类器
criterion:默认是’gini’系数,也可以选择信息增益的熵’entropy’
max_depth:树的深度大小
random_state:随机数种子

method:
decision_path:返回决策树的路径

泰坦尼克号数据

在泰坦尼克号和titanic2数据帧描述泰坦尼克号上的个别乘客的生存状态。在泰坦尼克号的数据帧不包含从剧组信息,但它确实包含了乘客的一半的实际年龄。关于泰坦尼克号旅客的数据的主要来源是百科全书Titanica。这里使用的数据集是由各种研究人员开始的。其中包括许多研究人员创建的旅客名单,由Michael A. Findlay编辑。
我们提取的数据集中的特征是票的类别,存活,乘坐班,年龄,登陆,home.dest,房间,票,船和性别。乘坐班是指乘客班(1,2,3),是社会经济阶层的代表。
其中age数据存在缺失。
在这里插入图片描述

# coding=utf-8
from sklearn.datasets import load_iris,fetch_20newsgroups
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_extraction import DictVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
from sklearn.tree import DecisionTreeClassifier
import pandas as pd
def decision():
    """
    决策树对泰坦尼克号进行预测生死
    :return: None
    """
    #获取数据
    titan = pd.read_csv("./data/train.csv")
    # print(titan.head())
    # titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")
    #处理数据,找出特征值和目标值
    x = titan[['Pclass','Age','Sex']]
    y = titan['Survived']
    # print(x)
    #处理缺失值
    x['Age'].fillna(x['Age'].mean(),inplace=True)
    #分割数据集到训练集和测试集
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25)
    #进行处理(特征工程)特征里面是类别  one_hot 编码
    dict = DictVectorizer(sparse=False)
    x_train = dict.fit_transform(x_train.to_dict(orient="records"))
    print(dict.get_feature_names_out())
    x_test = dict.transform(x_test.to_dict(orient="records"))
    print(x_train)
    #用决策树进行分类
    dec = DecisionTreeClassifier()
    dec.fit(x_train,y_train)
    #预测准确率
    print("预测的准确率:",dec.score(x_test,y_test))
    return None

if __name__ == "__main__":
    decision()

在这里插入图片描述

# coding=utf-8
import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier,export_graphviz


def decision():
    """
    决策树对泰坦尼克号进行预测生死
    :return: None
    """
    #获取数据
    titan = pd.read_csv("./data/train.csv")
    # print(titan.head())
    # titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")
    #处理数据,找出特征值和目标值
    x = titan[['Pclass','Age','Sex']]
    y = titan['Survived']
    # print(x)
    #处理缺失值
    x['Age'].fillna(x['Age'].mean(),inplace=True)
    #分割数据集到训练集和测试集
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25)
    #进行处理(特征工程)特征里面是类别  one_hot 编码
    dict = DictVectorizer(sparse=False)
    x_train = dict.fit_transform(x_train.to_dict(orient="records"))
    print(dict.get_feature_names_out())
    x_test = dict.transform(x_test.to_dict(orient="records"))
    print(x_train)
    #用决策树进行分类
    dec = DecisionTreeClassifier()
    dec.fit(x_train,y_train)
    #预测准确率
    print("预测的准确率:",dec.score(x_test,y_test))
    #导出决策树的结构
    export_graphviz(dec,out_file="./tree.dot",feature_names=['年龄','等级','女性','男性'])
    return None

if __name__ == "__main__":
    decision()

在这里插入图片描述

# coding=utf-8
import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier,export_graphviz


def decision():
    """
    决策树对泰坦尼克号进行预测生死
    :return: None
    """
    #获取数据
    titan = pd.read_csv("./data/train.csv")
    # print(titan.head())
    # titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")
    #处理数据,找出特征值和目标值
    x = titan[['Pclass','Age','Sex']]
    y = titan['Survived']
    # print(x)
    #处理缺失值
    x['Age'].fillna(x['Age'].mean(),inplace=True)
    #分割数据集到训练集和测试集
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25)
    #进行处理(特征工程)特征里面是类别  one_hot 编码
    dict = DictVectorizer(sparse=False)
    x_train = dict.fit_transform(x_train.to_dict(orient="records"))
    print(dict.get_feature_names_out())
    x_test = dict.transform(x_test.to_dict(orient="records"))
    print(x_train)
    #用决策树进行分类
    dec = DecisionTreeClassifier(max_depth=8)
    dec.fit(x_train,y_train)
    #预测准确率
    print("预测的准确率:",dec.score(x_test,y_test))
    #导出决策树的结构
    export_graphviz(dec,out_file="./tree.dot",feature_names=['年龄','等级','女性','男性'])
    return None

if __name__ == "__main__":
    decision()

在这里插入图片描述
决策树的优缺点以及改进:

优点:
简单的理解和解释,树木可视化。
需要很少的数据准备,其他技术通常需要数据归一化,
缺点:
决策树学习者可以创建不能很好地推广数据的过于复杂的树, 这被称为过拟合。
决策树可能不稳定,因为数据的小变化可能会导致完全不同的树被生成

改进:
减枝cart算法
随机森林

三、随机森林

集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。

集成学习 API:

class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’,
max_depth=None, bootstrap=True, random_state=None)
随机森林分类器
n_estimators:integer,optional(default = 10) 森林里的树木数量
criteria:string,可选(default =“gini”)分割特征的测量方法
max_depth:integer或None,可选(默认=无)树的最大深度
bootstrap:boolean,optional(default = True)是否在构建树时使用放回抽样

# coding=utf-8
import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.tree import DecisionTreeClassifier,export_graphviz
from sklearn.ensemble import RandomForestClassifier


def decision():
    """
    决策树对泰坦尼克号进行预测生死
    :return: None
    """
    #获取数据
    titan = pd.read_csv("/Volumes/D/data/train.csv")
    # print(titan.head())
    # titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")
    #处理数据,找出特征值和目标值
    x = titan[['Pclass','Age','Sex']]
    y = titan['Survived']
    # print(x)
    #处理缺失值
    x['Age'].fillna(x['Age'].mean(),inplace=True)
    #分割数据集到训练集和测试集
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.25)
    #进行处理(特征工程)特征里面是类别  one_hot 编码
    dict = DictVectorizer(sparse=False)
    x_train = dict.fit_transform(x_train.to_dict(orient="records"))
    print(dict.get_feature_names_out())
    x_test = dict.transform(x_test.to_dict(orient="records"))
    # print(x_train)
    # #用决策树进行分类
    # dec = DecisionTreeClassifier(max_depth=8)
    # dec.fit(x_train,y_train)
    # #预测准确率
    # print("预测的准确率:",dec.score(x_test,y_test))
    # #导出决策树的结构
    # export_graphviz(dec,out_file="./tree.dot",feature_names=['年龄','等级','女性','男性'])
    # return None
    #随机森林进行预测(超参数调优
    rf = RandomForestClassifier()
    param = {"n_estimators":[120,200,300,500,800,1200],"max_depth":[5,8,15,25,30]}
    #网格搜索和交叉验证
    gc = GridSearchCV(rf,param_grid=param,cv=2)
    gc.fit(x_train,y_train)
    print("准确率:",gc.score(x_test,y_test))
    print("查看选择的模型:",gc.best_params_)
if __name__ == "__main__":
    decision()

在这里插入图片描述

随机森林的优点:

在当前所有算法中,具有极好的准确率
能够有效地运行在大数据集上
能够处理具有高维特征的输入样本,而且不需要降维
能够评估各个特征在分类问题上的重要性
对于缺省值问题也能够获得很好得结果

总结

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值