知识图谱实战应用5-基于知识图谱的创建语义搜索功能

本文介绍了如何利用知识图谱创建语义搜索功能,包括自然语言理解、实体识别、关系抽取和结果生成四个步骤。通过neo4j构建企业知识图谱,展示数据结构和关系,并提供了简单的代码实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是微学AI,今天给大家讲一下知识图谱实战应用5-基于知识图谱的创建语义搜索功能。基于知识图谱的语义搜索功能是一种能够理解用户意图、并根据语义关系在知识图谱中进行查询的搜索方式。相比于传统的文本搜索,它可以更准确地回答用户的问题,提高搜索效率和搜索质量。

目录

一、项目背景

二、语义搜索步骤

1.自然语言理解

2.实体识别

3.关系抽取

4.结果生成

三、语义搜索代码实践


一、项目背景

随着互联网的快速发展,信息量呈指数级增长,传统的关键词匹配搜索方式逐渐暴露出其局限性。用户在进行搜索时,往往需要多次尝试不同的关键词组合才能找到所需的信息,这不仅耗时费力,还可能导致信息的遗漏。为了提高搜索的准确性和效率,语义搜索应运而生。

知识图谱作为一种结构化的知识表示方式,能够将信息以实体和关系的形式进行组织和存储。通过将语义搜索与知识图谱结合,搜索引擎可以更好地理解用户的查询意图,并在知识图谱中找到与之相关的实体和关系,从而提供更为精准的搜索结果。

一.介绍(Introduction) 1.XunTa是在lucene4.3上创建的通过“知识点”来找人的搜人引擎。  输入一个关键词(或组合),XunTa返回一个排名列表,排在前面的人是与该关键词(组合)最相关的“达人”。  可访问 http://www.xunta.so立即体验. 2.什么是搜人引擎?  这里的搜人不是人肉搜索,而是用户根据自己的兴趣和爱好输入相关知识点,然后找到这个知识点上的达人。 3.XunTa上的延伸  XunTa允许对每个人名下的数量无限制的关键词单独打分,从而实现基于“评价图谱”和“知识图谱”的好友匹配与信息推荐。 二.XunTa技术特点  1.在架构上内生地支持增量式实时搜索。  2.除达人搜索外,还提供最新搜索。  3.经过长期测试,性能稳定,速度快 三.布署方法  1. 软件包解压后可看到以下文件目录结构:  xunta_v1.0   |---demo    可直接布署到Tomcat的项目war包   |---luceneIndex  索引文件夹,下面放置Lucene4.3版本的索引文件,存放了XXX条来自社交网站的“发言”数据。   |---XunTa   XunTa项目源代码,可导入Eclipse(javaEE版)并运行。   |---readme.txt  您正在看的该说明文件。  2. Tomcat下直接体验XunTa搜人引擎   a.将索引文件夹luceneIndex_new复制到D盘根目录下   b.将 XunTa.war 复制到Tomcat的webapps目录下   c.启动Tomcat,然后在浏览器地址栏输入 http://localhost:8080/XunTa 可看到XunTa主页.在搜索框中输入关键词即返回“达人”列表。   (Tomcat的安装这里不另说明。)  3. 在myEclipse下导入源代码   a.xunta文件夹下放的是项目源文件,可直接导入myEclipse生成一个名为“xunta”的项目,   b.xunta\LocalContext\so\xunta\localcontext目录下的LocalContext.java是配置项目索引文件路径的类,默认是d:\\luceneIndex\\travel.     如果索引文件夹luceneIndex_new没有复制到D盘根目录下,则要修改默认路径.   c.启动myEclipse中的Tomcat7,然后在浏览器地址栏输入 http://localhost:8080/XunTa 即可看到XunTa主页.在搜索框中输入关键词即返回“达人”列表。 四.其它  1. 用户可按Lucene4.3标准自行创建索引数据,索引文档的结构可下载lukeall工具来查看.  2. 用户也可使用与XunTa配套的社交信息实时抓取工具来生成索引数据。它通过配置模版的方法抓取网页数据,也可以通过API获得目标网站的数据。该工具整理好亦将上载到开源社区。如急需,可向我们索取。  3. 你可以通过试用下面的网站来测试部分功能。 遇到任何技术问题,或对搜索创意感兴趣,欢迎加入寻TA网官方QQ群(298342166)讨论,也可发邮件(Email:1019357922@qq.com)或致电(18521702948,13817385089)垂询. 下载并使用该开源代码,表明您同意并遵守CC-BY-SA 3.0协议和GNU自由文档许可证.您可以上述协议条款下修改和再使用。 标签:(一种用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值