人工智能算法工程师(高级)课程11-自然语言处理之NLP的语言模型-seq2seq模型,seq+注意力与代码详解

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(高级)课程11-自然语言处理之NLP的语言模型-seq2seq模型,seq+注意力,word2vec与代码详解。本课程面向高级人工智能算法工程师,深入讲解自然语言处理(NLP)中的关键语言模型技术,包括seq2seq模型及其增强版加入注意力机制后的表现提升,经典的词嵌入方法word2vec,并提供了丰富的代码示例以帮助学员更好地理解和实现这些模型。通过本课程的学习,学员将掌握NLP领域内前沿的语言模型及其实现细节。

一、引言

自然语言处理(NLP)是人工智能领域的一个重要分支,近年来取得了显著的进展。本文将介绍几种经典的NLP语言模型,包括seq2seq模型、seq2seq+注意力机制、word2vec、EMLo、Transformer和BERT,并详细讲解它们的数学原理,最后用PyTorch实现这些模型。

二、seq2seq模型

1. 原理介绍

seq2seq模型是一种基于编码器-解码器架构的模型,主要用于机器翻译、文本摘要等序列到序列的任务。其数学原理如下:
设输入序列为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值