生成对抗网络在可将光到红外光跨模态风格迁移中的论文阅读

1、Facial Feature Embedded CycleGAN for VIS-NIR Translation

motivation

VIS-NIR人脸识别仍然是一项具有挑战性的任务,因为这两种模式的光谱成分之间的区别以及配对训练数据的不足。
本文在CycleGAN的启发下,提出了一种将VIS人脸图像转化为伪NIR图像的方法,该方法的目的是为了近似真实NIR图像的分布,并提出了一种新的人脸特征嵌入CycleGAN。

首先,为了在保持可见光域和近红外域的共同人脸表示的同时了解近红外域的特殊特征,我们采用了一种通用的人脸特征抽取器(FFE)来代替原CycleGAN生成器中的编码器。为了实现面部特征提取,本文在VIS面部数据库上对MobileFaceNet进行了预训练,并且能够提取有效的特征。其次,考虑到一个新的像素一致性损失,增强了区域不变特征学习。最后,我们建立了一个新的WHU VIS-NIR数据库,该数据库在面部旋转和表情上有所不同,以丰富训练数据。
在这里插入图片描述

methods

Networks

FFE的效果在图像迁移结果上有着较大的影响,因此论文选择了MobileFaceNet作为人脸特征提取器(FFE)。
将MobileFaceNet嵌入到CycleGAN的生成器中有助于学习人脸特征。转换模块不转换从整体输入图像中提取的特征,只转换由FFE提取的面部特征,有效地解决了人脸风格转换的问题。因此我们需要一个能够精确提取人脸特征的人脸特征提取器。然而,近红外图像的数量远小于可见光图像。两种模态训练样本量的巨大差异是风格转换任务的另一大挑战。在这种情况下,很难同时在少量成对的VIS-NIR图像上训练好FFE模块和整个生成器。因此,我们对FFE模块进行了预先训练,充分利用了易于获取的VIS图像。预先训练的FFE模块可以精确地提取出任何来自VIS域或NIR域的人脸特征。然后,我们在成对的VIS-NIR数据集上训练FFECycleGAN网络,学习两个域之间的映射函数。通过这样做,我们可以合成更逼真的近红外图像。
在这里插入图片描述

Pixel Consistency Loss

用最小方差损失代替了对数平方损失。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总损失:

在这里插入图片描述

2、Cross-spectral Face Completion for NIR-VIS Heterogeneous Face Recognition

paper

摘要

近红外-可见光(NIR-VIS)异种人脸识别是指将NIR与VIS人脸图像进行匹配的过程。目前的异构方法试图通过从NIR图像合成VIS图像,将VIS人脸识别方法扩展到NIR光谱。然而,由于自遮挡和传感间隙,近红外人脸图像会丢失一些可见光内容,因此与可见光人脸图像相比,它们总是不完整的。本文将高分辨率非均匀人脸合成建模为两个组件的互补组合,即纹理修复组件和姿态校正组件。Inpainting组件从NIR图像纹理合成并输入VIS图像纹理。校正组件将NIR图像中的任何姿势映射到VIS图像中的正面姿势,从而生成成对的NIR和VIS纹理。为了将两个组件集成到端到端的深度网络中,开发了一种翘曲程序。分别设计了一个细粒度鉴别器和一个基于小波的鉴别器来监控类内方差和视觉质量。一个紫外线损失,两个敌对损失和一个像素损失,以确保合成结果。我们证明,通过附加校正分量,我们可以简化从一对多不成对图像转换到一对一图像转换的异类人脸合成,并将异类识别过程中的光谱和姿态差异最小化。大量的实验结果表明,我们的网络不仅可以生成高分辨率的可视人脸图像,而且有助于提高异构人脸识别的准确性。
在这里插入图片描述

3、Adversarial Discriminative Heterogeneous Face Recognition

paper

摘要

不同人脸模式的感知模式之间的差异仍然是异种人脸识别(HFR)中一个具有挑战性的问题。本文提出了一种对抗性识别特征学习框架,通过对原始像素空间和紧凑特征空间的对抗性学习来消除传感间隙。该框架将跨光谱的人脸幻觉和识别特征学习整合到一个端到端的对抗网络中。在像素空间中,我们利用生成的对抗网络进行跨光谱的人脸幻觉。提出了一种复杂的双路径模型,解决了图像对的不足,同时考虑了图像的全局结构和局部纹理。在特征空间中,分别采用一个逆损失和一个高阶方差差分损失来度量两个异质分布之间的全局和局部差异。这两种损失增强了区域不变特征学习和模态无关噪声消除。在三个NIR-VIS数据库上的实验结果表明,我们提出的方法在不需要复杂网络或大规模训练数据集的情况下,优于最先进的HFR方法。
在这里插入图片描述
在这里插入图片描述

<think>好的,我现在需要帮助用户解决关于将CycleGAN与YOLOv10结合用于电动车场景的生成对抗网络实现及应用的问题。首先,我需要理清用户的具体需求。用户可能希望利用CycleGAN生成电动车相关的图像数据,然后通过YOLOv10进行目标检测,可能是为了数据增强或场景模拟。接下来,我需要分析两者的结合方式,可能的步骤包括数据准备、CycleGAN的训练、生成图像的处理,以及YOLOv10的应用。 首先,CycleGAN主要用于图像到图像的转换,比如将白天的电动车场景转换为夜晚的场景。用户可能需要这样的转换来扩充数据集,以提高YOLOv10的检测鲁棒性。需要确认CycleGAN生成的图像质量是否足够好,能否被YOLOv10有效利用。此外,YOLOv10作为最新的目标检测模型,可能在速度和精度上有优势,但需要确保生成的图像与真实数据分布接近,避免域适应问题。 接着,考虑实现步骤。数据准备方面,需要收集电动车场景的真实图像和对应的目标域图像(如不同天气、照条件下的图片)。然后训练CycleGAN模型,生成转换后的图像。之后,使用这些生成图像来训练或微调YOLOv10模型,可能需要进行联合训练或交替训练,确保检测模型能够适应生成的数据。 可能的挑战包括CycleGAN生成图像的伪影可能影响检测性能,需要评估生成图像的质量。另外,数据标注的问题,生成图像是否需要重新标注,或者可以利用CycleGAN保持标注的一致性。例如,如果CycleGAN只是改变照或颜色,而目标的位置和类别不变,那么原始标注可能仍然有效,否则可能需要额外的标注工作。 还需要考虑计算资源,训练CycleGAN和YOLOv10都需要较高的计算能力,尤其是处理高分辨率图像时。用户可能需要使用云服务或高性能GPU来加速训练过程。此外,模型优化和部署的问题,比如如何将两个模型集成到实际应用中,是否需要在端侧设备上运行,这可能会影响模型的选择和压缩策略。 关于应用场景,用户可能希望用于自动驾驶系统中的环境感知,比如在复杂天气条件下提高电动车检测的准确性。结合引用[1]中提到的环境复杂度感知,CycleGAN生成的多样化场景可能帮助YOLOv10更好地理解不同复杂度的环境,从而提高整体系统的鲁棒性。 最后,需要验证整个流程的有效性。可能的方法包括在生成的数据集上测试YOLOv10的性能,与在真实数据上的表现进行对比,分析改进或退化的原因。此外,进行消融实验,确定CycleGAN生成的数据对检测模型的具体贡献。 总结来说,整个流程涉及数据生成、模型训练、评估和优化,需要综合考虑数据质量、模型架构、计算资源和实际应用需求。用户可能需要分步骤实施,先验证CycleGAN生成数据的可行性,再逐步集成YOLOv10进行目标检测,最终优化整个系统。</think>### CycleGAN与YOLOv10结合用于电动车场景的实现及应用 #### 1. 技术结合思路 CycleGAN是一种无监督图像到图像转换模型,可将电动车场景中的图像进行跨域转换(如白天→夜晚、晴天→雨天),YOLOv10是高效的实时目标检测模型。两者的结合可实现: - **数据增强**:通过CycleGAN生成多样化电动车场景数据,提升YOLOv10的泛化能力[^1] - **域适应优化**:将真实场景与生成场景的特征对齐,提高复杂环境下的检测鲁棒性 - **场景模拟**:生成极端天气/照条件下的电动车场景,用于安全测试 #### 2. 实现步骤 **阶段一:数据准备** - 收集电动车场景数据集: ```python # 示例数据目录结构 datasets/ ├── real_A/ # 源域(如晴天场景) ├── fake_B/ # 生成域(如雨天场景) └── labels/ # YOLO格式标注 ``` - 使用LabelImg等工具标注电动车、行人、交通标志等目标 **阶段二:CycleGAN训练** ```python # 基于PyTorch的模型架构 class CycleGAN(nn.Module): def __init__(self): self.G_A2B = Generator() # A→B生成器 self.G_B2A = Generator() # B→A生成器 self.D_A = Discriminator() # 域A判别器 self.D_B = Discriminator() # 域B判别器 def forward(self, real_A, real_B): fake_B = self.G_A2B(real_A) rec_A = self.G_B2A(fake_B) # 添加循环一致性损失 cycle_loss = L1_loss(rec_A, real_A) ``` **阶段三:YOLOv10集成** ```python # 使用生成数据增强训练集 train_data = ConcatDataset([ RealDataset('real_images/'), SyntheticDataset('fake_images/') ]) # YOLOv10模型配置 model = YOLOv10( backbone='CSPDarknet', head='DecoupledHead', neck='PAN-FPN' ) ``` #### 3. 关键优化点 - **注意力机制融合**:在CycleGAN生成器中加入CBAM模块,增强关键区域生成质量 $$Attention = \sigma(f_{1×1}([MaxPool(F), AvgPool(F)]))$$ - **联合训练策略**: ```mermaid graph LR A[真实数据] --> B[CycleGAN] B --> C[生成数据] C --> D[YOLOv10] D --> E[检测结果] E --> F[反向传播更新生成器] ``` - **动态阈值调整**:根据YOLOv10的检测置信度自动调节生成图像质量 #### 4. 典型应用场景 1. **虚拟测试场构建**:生成暴雨/大雾等极端天气场景 2. **传感器模拟**:创建多模态(RGB→红外)训练数据 3. **对抗训练**:通过生成对抗样本提升模型鲁棒性 ####
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值