PYTORCH COMMON MISTAKES

本文介绍了如何使用PyTorch实现一个简单的CNN模型进行MNIST手写数字识别,讨论了过拟合、数据预处理、模型训练及优化过程中常见的问题,如未设置训练/评估模式、忘记梯度清零、错误使用CrossEntropyLoss等。
摘要由CSDN通过智能技术生成

1.Didn’t overfit a single batch

data, targets = next(iter(train_loader))
import torch
import torchvision # torch package for vision related things
import torch.nn.functional as F  # Parameterless functions, like (some) activation functions
import torchvision.datasets as datasets  # Standard datasets
import torchvision.transforms as transforms  # Transformations we can perform on our dataset for augmentation
from torch import optim  # For optimizers like SGD, Adam, etc.
from torch import nn  # All neural network modules
from torch.utils.data import DataLoader  # Gives easier dataset managment by creating mini batches etc.
from tqdm import tqdm  # For nice progress bar!

# Simple CNN
class CNN(nn.Module):
    def __init__(self, in_channels=1, num_classes=10):
        super(CNN, self).__init__()
        self.conv1 = nn.Conv2d(
            in_channels=in_channels,
            out_channels=8,
            kernel_size=(3, 3),
            stride=(1, 1),
            padding=(1, 1),
        )
        self.pool = nn.MaxPool2d(kernel_size=(2, 2), stride=(2, 2))
        self.conv2 = nn.Conv2d(
            in_channels=8,
            out_channels=16,
            kernel_size=(3, 3),
            stride=(1, 1),
            padding=(1, 1),
        )
        self.fc1 = nn.Linear(16 * 7 * 7, num_classes)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = self.pool(x)
        x = F.relu(self.conv2(x))
        x = self.pool(x)
        x = x.reshape(x.shape[0], -1)
        x = self.fc1(x)
        return x


# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Hyperparameters
in_channels = 1
num_classes = 10
learning_rate = 0.001
batch_size = 1
num_epochs = 3

# Load Data
train_dataset = datasets.MNIST(root="dataset/", train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root="dataset/", train=False, transform=transforms.ToTensor(), download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)

data, targets = next(iter(train_loader))

# Initialize network
model = CNN(in_channels=in_channels, num_classes=num_classes).to(device)

# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# Train Network
for epoch in range(num_epochs):
    #for batch_idx, (data, targets) in enumerate(tqdm(train_loader)):
       # Get data to cuda if possible
       data = data.to(device=device)
       targets = targets.to(device=device)

       # forward
       scores = model(data)
       loss = criterion(scores, targets)

       # backward
       optimizer.zero_grad()
       loss.backward()

       # gradient descent or adam step
       optimizer.step()

# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
    num_correct = 0
    num_samples = 0
    model.eval()

    with torch.no_grad():
        for x, y in loader:
            x = x.to(device=device)
            y = y.to(device=device)

            scores = model(x)
            _, predictions = scores.max(1)
            num_correct += (predictions == y).sum()
            num_samples += predictions.size(0)


    model.train()
    return num_correct/num_samples


print(f"Accuracy on training set: {check_accuracy(train_loader, model)*100:.2f}")
print(f"Accuracy on test set: {check_accuracy(test_loader, model)*100:.2f}")

2.Forget to set training or eval

model.eval()
check_accuracy(test_loader,model)
model.train()

3.Forgot .zero_grad()

#backward
optimizer.zero_grad()
loss.backword()

4.Softmax with Cross Entrophy

nn.CrossEntrophyLoss()里面包含softmax

5.bias when using BatchNorm

nn.BatchNorm2d()包含bias.在其他地方不需要bias层。把其他层的bias设置成false

Using view as permute

在这里插入图片描述

7.Using bad data augmentation

比如一些数据增强改变了相对应的标签值。例如6和9通过翻转可能与之对应的标签出现了变化

8.not shuffing Data

9.not normalize Data

10.not clipping Gradients(RNNs,GRUs,LSTMs)

torch.nn.utils.clip_grad_norm(model.parameters(),max_norm=1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值