【机器学习入门】2、机器学习算法分类

机器学习算法主要分为以下四类:
监督学习、非监督学习、半监督学习和增强学习

监督学习

方法:分类任务、回归任务
给机器的训练数据拥有“标记”或者“答案”。常见的分类任务中,每个样本都有标记。
白话版解释:给人类已经分类好的数据进行机器训练。

PS:本系列内容主要研究监督学习。

非监督学习

给机器的训练数据没有“标记”或者“答案”,与监督学习概念相反。
方法
1、对没有“标记”的数据进行分类,叫做聚类分析;比如电商网站中,对消费者的消费行为、偏好进行分类。
2、数据的降维处理
(1)特征提取:去掉与目标问题不相关的样本特征。
(2)特征压缩:PCA算法,不去掉特征,将关联性较强的特征进行压缩
意义:方便可视化、异常检测

半监督学习

给机器的训练数据一部分没有“标记”或者“答案”,另一部分有。
产生原因:各种原因产生的标记缺失
方法:先用无监督学习进行数据处理,然后再用监督学习手段做模型的训练和预测。

增强学习

根据周围环境的情况,采取行动,根据采取行动的结果,学习行动方式。
在这里插入图片描述
适用于:机器人,如围棋机器人、美剧《西部世界》中的人工智能。属于强智能发展范畴。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值