随机过程 $3泊松过程

本文深入探讨了泊松过程,包括指数分布的性质、泊松过程的定义和特性、广义泊松过程以及霍克斯过程。介绍了泊松过程在等待时间、服务台问题和随机强度变化中的应用,并涉及独立同分布随机变量的联合分布和期望值计算。
摘要由CSDN通过智能技术生成

§3 泊松过程

C1 指数分布

1)无记忆性 ∀ s , t > 0 : P { X > s + t ∣ X > s } = P { X > t } \forall s,t\gt 0:P\{X\gt s+t|X\gt s\}=P\{X\gt t\} s,t>0:P{ X>s+tX>s}=P{ X>t}

  • X ∼ e ( λ ) : E [ X − t ∣ X > t ] = E X X\sim e(\lambda): E[X-t|X\gt t]=EX Xe(λ):E[XtX>t]=EX

  • 指数分布是唯一满足无记忆性的分布

    证明: F ˉ ( x ) = 1 − F ( x ) , ∀ s , t > 0 : F ˉ ( s + t ) = F ˉ ( s ) F ˉ ( t )    ⟹    F ( x ) = 1 − e − λ t \bar F(x) = 1-F(x),\forall s,t\gt 0:\bar F(s+t) = \bar F(s)\bar F(t)\implies F(x)=1-e^{-\lambda t} Fˉ(x)=1F(x),s,t>0:Fˉ(s+t)=Fˉ(s)Fˉ(t)F(x)=1eλt

2)$T\sim e(\lambda),\forall f:E[\int\infin_0e{-\lambda x}f(x)\mathrm{d}x] =E[\int^T_0f(x)\mathrm{d}x] $

3) X i ∼ e ( λ i ) : min ⁡ i { X i } ∼ e ( ∑ i λ i ) X_i\sim e(\lambda_i):\min\limits_i\{X_i\}\sim e(\sum\limits_i\lambda_i) Xie(λi):imin{ Xi}e(iλi),且与排序无关

  • P { X k = min ⁡ i { X i } } = λ i ∑ i λ i P\{X_k = \min\limits_i \{X_i\}\}= \frac{\lambda_i}{\sum\limits_i\lambda_i} P{ Xk=imin{ Xi}}=iλiλi

    双服务台等待时间:

    E T = E [ T ∣ R 1 < R 2 ] λ 1 λ 1 + λ 2 + E [ T ∣ R 2 ≤ R 1 ] λ 2 λ 1 + λ 2 ET = E[T|R_1\lt R_2]\frac{\lambda_1}{\lambda_1+\lambda_2}+E[T|R_2\le R_1]\frac{\lambda_2}{\lambda_1+\lambda_2} ET=E[TR1<R2]λ1+λ2λ1+E[TR2R1]λ1+λ2λ2
    E T = 1 λ 1 + λ 2 ET = \frac{1}{\lambda_1+\lambda_2} ET=λ1+λ21

    单服务台单队列,服务时间 ∼ e ( μ ) \sim e(\mu) e(μ),每个人的等待极限 ∼ e ( θ ) \sim e(\theta) e(θ)

    第n个人被服务概率 P n = ( 1 − θ n θ + μ ) P n − 1 = μ n θ + μ P_n = (1-\frac{\theta}{n\theta+\mu})P_{n-1}=\frac{\mu}{n\theta + \mu} Pn=(1nθ+μθ)Pn1=nθ+μμ

    第n个人等待时间: W n = 1 n θ + μ + W n − 1 = ∑ k = 1 n 1 k θ + μ W_n = \frac{1}{n\theta+\mu}+W_{n-1}=\sum_{k=1}^n\frac{1}{k\theta+\mu} Wn=nθ+μ1+Wn1=k=1nkθ+μ1

4)独立同分布 X i ∼ e ( λ ) : S = ∑ k = 1 n X k ∼ Γ ( n , λ ) , p S ( s ) = λ e − λ s ( λ s ) n − 1 ( n − 1 ) ! X_i\sim e(\lambda):S = \sum\limits_{k=1}^nX_k\sim \Gamma(n,\lambda),p_S(s) = \lambda e^{-\lambda s}\frac{(\lambda s)^{n-1}}{(n-1)!} Xie(λ):S=k=1nXkΓ(n,λ),pS(s)=λeλs(n1)!(λs)n1

5)独立 X i ∼ e ( λ i ) : S = ∑ k = 1 n X k , p S ( s ) = ∑ k = 1 n [ λ k e − k s ∏ j ≠ i λ j λ j − λ i ] X_i\sim e(\lambda_i):S = \sum\limits_{k=1}^nX_k,p_S(s) = \sum\limits_{k=1}^n[\lambda_ke^{-k s}\prod\limits_{j\ne i}\frac{\lambda_j}{\lambda_j-\lambda_i}] Xie(λi):S=k=1nXk,pS(s)=k=1n[λkeksj=iλjλiλj],称为亚指数分布

  • lim ⁡ s → ∞ r S ( s ) = min ⁡ i { λ i } \lim\limits_{s\to \infin} r_S(s) = \min\limits_i\{\lambda_i\} slimrS(s)=i
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值