第四章泊松过程3

1几何泊松过程

1.1定义

{ N t , t ≥ 0 } \{N_t,t\geq 0\} {Nt,t0}为独立增量过程,常数 σ > − 1 , \sigma>-1, σ>1,定义 N t g e = e N t l n ( σ + 1 ) − λ σ t = ( σ + 1 ) N t e − λ t N_t^{ge}=e^{N_tln(\sigma+1)-\lambda\sigma t}=(\sigma+1)^{N_t}e^{-\lambda t} Ntge=eNtln(σ+1)λσt=(σ+1)Nteλt

性质

对于 ∀ 0 ≤ s < t \forall 0\leq s<t 0s<t, E [ N t g e N s g e ] = 1 E\left[\frac{N_t^{ge}}{N_s^{ge}}\right]=1 E[NsgeNtge]=1
证明:
在这里插入图片描述

2复合泊松过程

1定义

N = { N t , t ≥ 0 } N=\{N_t,t\geq 0\} N={Nt,t0}是参数为 λ \lambda λ的泊松分布, { Y k , k = 1 , 2 , . . . } \{Y_k,k=1,2,...\} {Yk,k=1,2,...}是一系列独立同分布的随机变量,且与 N N N独立。那么我们令 X t = ∑ n = 1 N t Y k X_t=\sum_{n=1}^{N_t}Y_k Xt=n=1NtYk X = { X t , t ≥ 0 } X=\{X_t,t\geq 0\} X={Xt,t0}为复合泊松过程

  • 理解
    Nt表示随机点数的个数, Y k Y_k Yk代表每个随机点数所携带的能量
  • 性质
    • 可以由随机游动过程和泊松过程来表示
    • 满足平稳独立增量性

2数字特征

设随机变量的数学期望为 μ , \mu, μ,方差为 σ 2 , \sigma^2, σ2,计算复合泊松过程的期望方差相关函数。
期望:
E [ X t ] = E [ ∑ k = 1 N t Y k ] = E [ ∑ k = 1 N t Y k ∣ N t = n ] = E [ E ( ∑ k = 1 N t Y k ) P ( N t = n ) ] = E [ n μ ] = λ t μ E[X_t]=E[\sum_{k=1}^{N_t}Y_k]=E[\sum_{k=1}^{N_t}Y_k|N_t=n]=E[E(\sum_{k=1}^{N_t}Y_k)P(N_t=n)]=E[n\mu]=\lambda t\mu E[Xt]=E[k=1NtYk]=E[k=1NtYkNt=n]=E[E(k=1NtYk)P(Nt=n)]=E[nμ]=λtμ方差:
E [ ( X t − m X ( t ) 2 ] = E [ X t 2 − 2 X t m X ( t ) + m X ( t ) 2 ] = E [ X t 2 − 2 X t m X ( t ) + m X ( t ) 2 ] E[(X_t-m_X(t)^2]=E[X_t^2-2X_tm_X(t)+m_X(t)^2]=E[X_t^2-2X_tm_X(t)+m_X(t)^2] E[(XtmX(t)2]=E[Xt22XtmX(t)+mX(t)2]=E[Xt22XtmX(t)+mX(t)2]不同的 Y k Y_k Yk是独立的,所以要分两种情况讨论 E [ n ( μ 2 + σ 2 ) + n ( n − 1 ) μ 2 ] − μ 2 λ 2 t 2 = λ t ( μ 2 + σ 2 ) + ( λ 2 t 2 + λ t ) μ 2 − λ t μ 2 − λ 2 t 2 μ 2 = λ t ( μ 2 + σ 2 ) E[n(\mu ^2+\sigma^2)+n(n-1)\mu^2]-\mu^2\lambda^2t^2=\lambda t(\mu ^2+\sigma^2)+(\lambda^2 t^2+\lambda t)\mu^2-\lambda t\mu^2-\lambda^2 t^2\mu^2=\lambda t(\mu^2+\sigma^2) E[n(μ2+σ2)+n(n1)μ2]μ2λ2t2=λt(μ2+σ2)+(λ2t2+λt)μ2λtμ2λ2t2μ2=λt(μ2+σ2)
相关函数:
E [ X s X t ] = E [ X s ( X t − X s + X s ) ] = E [ X s ( X t − X s ) ] + E [ X s 2 ] = m X ( s ) m X ( t − s ) + E [ X s 2 ] E[X_sX_t]=E[X_s(X_t-X_s+X_s)]=E[X_s(X_t-X_s)]+E[X_s^2]=m_X(s)m_X(t-s)+E[X_s^2] E[XsXt]=E[Xs(XtXs+Xs)]=E[Xs(XtXs)]+E[Xs2]=mX(s)mX(ts)+E[Xs2]
在这里插入图片描述

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值