线性代数的本质第六章——逆矩阵、列空间与零空间

提出正确的问题比回答它更难 ——格奥尔格·康托尔
To ask the right question is harder than to answer it - Georg Cantor

相关名词有:高斯消元法 Gaussian elimination、行阶梯形 Row echelon form。这里着眼的是对抽象的概念建立一个几何直观的理解,计算的任务就交给计算机去做。
内心一直的真实os hhh

逆矩阵

在这里插入图片描述
A逆与A相乘
两个变换相继作用在代数上体现为矩阵乘法,A逆的核心性质在于A逆乘以A等于一个“什么都不做”的矩阵,这个“什么都不做”的变换被称为“恒等变换”。

  • det(A)≠0
    只要变换不将空间压缩到一个更低的维度上,也就是它的行列式不为零【det(A)≠0】,那它就存在逆变换——A逆使得:
    在这里插入图片描述
    在这里插入图片描述
    而要想求解方程,只需将A逆与向量v相乘即可。
  • det(A)=0
    与这个方程组相关的变换将空间压缩到更低的维度上,此时没有逆变换。你不能将一条线“解压缩”为一个平面。

  • 当变换的结果为一条直线时,也就是说结果是一维的,我们称这个变换的秩为1.
  • 所以说“秩”代表变换后空间的维度
  • 比如说对于2×2的矩阵,它的秩最大为2,意味着基向量仍旧能张成整个二维空间,并且矩阵的行列式不为零。但是3×3的矩阵秩为2,就说明空间被压缩了。

列空间

矩阵所对应的线性变换的所有可能的结果的集合(包含原空间及所有它的降维空间)。列空间就是矩阵的列所张成的空间(原空间——列不相关,降一维空间——一个列是其他列的线性组合,即相关)。

  • 更精确的秩的定义就是列空间的维数
  • 满秩:秩等于列数。空间不会被压缩维度。
  • 零向量一定会被包含在列空间中,因为线性变换必须保持原点位置不变

零空间

变换后落在原点的向量的集合,称为这个矩阵(再次强调矩阵 = 变换的数字表达)的零空间或核。
二维压缩到一个直线(一维),有一条直线(一维)的点被压缩到原点。
三维压缩到一个面(二维),有一条直线(一维)的点被压缩到原点。
三维压缩到一条线(一维),有一个平面(二维)的点被压缩到原点。
在这里插入图片描述

从几何角度理解线性方程组的一个高水平概述。

  • 每个方程组都有一个线性变换与之联系,当逆变换存在时,你就能用这个逆变换求解方程组。
  • 不存在逆变换时,列空间的概念让我们清楚什么时候存在解。
  • 零空间的概念有助于我们理解所有可能得解的集合是什么样的。

非方阵

一个3×2的矩阵,它的几何意义是将二维空间映射到三维空间上。因为矩阵有两列说明输入空间有两个基向量,有三行表明每一个基向量在变换后都用三个独立的坐标来描述。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值