搭建Ubuntu GPU服务器(宿主机篇)

本文详细介绍了如何在Ubuntu 20.04上搭建GPU服务器,包括安装Ubuntu、换源、安装必备工具、Nvidia驱动、CUDA、cuDNN、docker及Nvidia-docker。步骤清晰,涵盖从显卡驱动到环境变量配置,再到验证安装成功和后续应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

搭建Ubuntu GPU服务器(宿主机篇)

1、安装Ubuntu 20.04

注意,安装千万不要选择最小安装,就选正常安装就行

2、换源

阿里源网站

注意千万别换成其他版本的源,一定要对应ubuntu 20.04

cd /etc/apt
sudo cp sources.list sources.list.bak
sudo vi sources.list

将以下内容替换进去

deb http://mirrors.aliyun.com/ubuntu/ focal main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal main restricted universe multiverse

deb http://mirrors.aliyun.com/ubuntu/ focal-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-security main restricted universe multiverse

deb http://mirrors.aliyun.com/ubuntu/ focal-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-updates main restricted universe multiverse

deb http://mirrors.aliyun.com/ubuntu/ focal-proposed main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-proposed main restricted universe multiverse

deb http://mirrors.aliyun.com/ubuntu/ focal-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ focal-backports main restricted universe multiverse

然后更新apt-get

sudo apt-get update

3、安装必要工具

安装vim

sudo apt-get install vim

安装net-tools

sudo apt-get install net-tools

安装ssh服务器

sudo apt-get install openssh-server
sudo apt-get install wget

4、安装Nvidia显卡驱动

Ubuntu 20.04提供了官方的驱动源,可以直接用图形界面安全安装

选择软件和更新,选择附加驱动,选择最新版本的驱动源。

等待安装结束,结束后重启电脑

输入

nvidia-smi

验证显卡驱动是否正确安装

5、安装CUDA

CUDA11.5官方下载网址

具体的安装方法在官网也有详细的文档说明 Installation Guide for Linux,强烈建议大家自己去看一手资料

1、确认自己的显卡是否在支持CUDA

输入指令,查看PCI设备,在其中查找nvidia

lspci | grep -i nvidia

去官网查找自己的网卡是否支持CUDA 查询网址

我们实验室的GPU是RTX4000可以看到是支持的

而我的笔记本是Geforce 940MX,官网上只有940M在内,但是不要慌,先点击940M,在Product Family中可以看到940MX,点击发现上面Supported Technologies是支持CUDA的,所以也可以安装CUDA

在这里插入图片描述

2、确认自己的显卡驱动版本

查看自己的显卡版本

nvidia-smi

CUDA Downloads下面的Resources中点击

### 如何在Ubuntu搭建GPU服务器 #### 准备工作 为了成功搭建GPU服务器,在开始之前需确认硬件兼容性并准备必要的软件包。确保拥有支持CUDA的NVIDIA GPU,并已获取相应的驱动程序。 #### 安装SSH服务 通过命令行安装OpenSSH服务器以便远程访问: ```bash sudo apt-get update sudo apt-get install openssh-server ``` #### 更新系统工具链 为保障编译环境健全,先更新基础开发工具链[^2]: ```bash sudo apt-get install gcc sudo apt-get install make sudo apt-get install ubuntu-make ``` #### 安装NVIDIA显卡驱动 依据官方指南或特定于操作系统的说明来选择合适的驱动版本。通常可从[NVIDIA官方网站](https://www.nvidia.com/Download/index.aspx)下载最新稳定版驱动[^4]。安装过程如下: 1. 添加NVIDIA PPA源(如果适用) ```bash sudo add-apt-repository ppa:graphics-drivers/ppa ``` 2. 刷新APT缓存并查询可用驱动列表 ```bash sudo apt-get update ubuntu-drivers devices ``` 3. 执行驱动安装指令 ```bash sudo apt-get install nvidia-driver-xxx # xxx代表具体版本号 ``` 重启计算机使更改生效。 #### CUDA Toolkit部署 根据目标应用需求挑选适当版本的CUDA Toolkit。建议参照官方文档中的推荐组合表来决定最佳搭配方案。可通过.run文件离线安装或是利用APT仓库在线安装[^1]。 ##### 使用APT方式安装CUDA ```bash wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update sudo apt-get -y install cuda ``` 完成上述步骤后记得调整PATH变量以简化后续调用流程。 #### cuDNN集成 cuDNN作为深度学习框架的重要组成部分,其安装依赖于先前已完成的CUDA环境配置。按照所选CUDA版本匹配相应cuDNN版本,并遵循官方指引完成解压、复制库文件等操作[^7]。 #### 验证安装成果 最后一步是对整个环境的有效性进行验证。可以编写简单的测试代码片段来进行初步检验;也可以运行`nvidia-smi`命令查看当前设备状态及驱动加载情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值