6.8 基于Wi-Fi指纹的大规模室内定位分层辅助深度神经网络架构

文献来源:Cha J, Lim E. A hierarchical auxiliary deep neural network architecture for large-scale indoor localization based on Wi-Fi fingerprinting[J]. Applied Soft Computing, 2022, 120: 108624.

以下内容是论文的中文翻译

摘要

Conventional application of deep neural networks (DNNs) to multi-building and multi-floor indoor localization is based on pure regression of three-dimensional location coordinates (e.g., longitude, latitude and altitude (i.e., floor height)), classification of location labels (e.g., building, floor and room information), or hybrid classification/regression of labels and coordinates (e.g., building and floor information and two-dimensional location coordinates), which, however, does not take into account an innate hierarchical auxiliary information (e.g., building->floor->location) of indoor localization data.

深度神经网络(DNNs)在多建筑物、多楼层室内定位中的常规应用是基于三维位置坐标(如经度、纬度和海拔高度(如楼层高度))的纯回归,位置标签的分类(如建筑物、楼层和房间信息),或标签和坐标(如建筑物、楼层信息和二维位置坐标)的混合分类/回归,然而,没有考虑室内定位数据固有的分层辅助信息(例如,建筑物-楼层-位置)

Such conventional application of DNNs faces scalability issues in case of large-scale indoor localization where the numbers of buildings and floors are large.

这种传统的DNNs应用在建筑物和楼层数量较大的大规模室内定位中面临可扩展性问题

Inserting classification tasks as auxiliary networks into a regression neural network, we propose a new framework called a hierarchical auxiliary deep neural network (HADNN), which not only address the scalability issues with an increasing number of classes but also could further reduce the hierarchical information error.

将分类任务作为辅助网络插入到回归神经网络中,提出了一种新的框架,称为层次辅助深度神经网络(HADNN)它不仅可以解决随着类别数量增加而带来的可扩展性问题,而且可以进一步减少层次信息误差。

In HADNN, hierarchical auxiliary information of given data are provided and used during the training phase.

在HADNN中,给定数据的分层辅助信息在训练阶段被提供和使用。

As there are two possible hierarchical information cases in indoor localization data: (1) given only floors and (2) given both buildings and floors, we propose two architectures: one utilizing only floor information and the other taking both building and floor information.

由于室内定位数据中存在两种可能的分层信息情况(1)只给定楼层和(2)同时给定建筑物和楼层,本文提出两种架构:一种只利用楼层信息,另一种同时使用建筑物和楼层信息。

At test phase, HADNN predicts building, floor and location coordinate at the same time.

在测试阶段,HADNN同时预测建筑物、楼层和位置坐标。

Experimental results show that the architecture of HADNN achieves better performance of a coordinate regression task and require a smaller number of parameters than the pure two-dimensional location coordinates regression model.

实验结果表明,与单纯的二维位置坐标回归模型相比,HADNN架构在坐标回归任务中取得了更好的性能,且需要的参数数量更少。

In addition, HADNN does not require the training data and coarse classes (e.g., building and floor information) at test phase while previous methods still require the training data to obtain location coordinates.

此外,HADNN在测试阶段不需要训练数据和粗类(如建筑物和楼层信息),而之前的方法仍然需要训练数据来获取位置坐标。

3. Hierarchical Auxiliary Deep Neural Network

为了提出新的架构和提高性能,本节首次提出了自适应损失,它能够解决层次类和位置坐标造成的损失之间的不平衡学习。在此基础上,推导出了多楼层、多建筑和多楼层两种类型的建筑结构。

3.1 自适应损失

分层神经网络在室内定位中的处理包括通过优化各损失的总和来学习建筑物、楼层和位置坐标等多任务。基于所有损失的总和,我们得到了一个有趣的结果,即每个任务的学习是不相等的。这意味着一些任务比其他任务学习得更快。这是因为每个任务的收敛速度是不同的。例如,学习建筑物预测比学习位置坐标预测容易得多,因为建筑物预测是一个具有少量类的分类任务,而位置坐标预测是一个回归任务。因此,在所有的学习任务中,学习过程呈现出不均匀性。在本节中,我们提出自适应损失来解决上述问题。

自适应损失的两个要点是(1)计算权重以近似相等的损失比率(2)最终任务的损失乘以额外的权重k,因为最终任务是最重要的任务。具体流程如下:

3.2连续前馈神经网络 | Consecutive feedforward neural network ,C-FNN

FNN的结构被表示为一个前馈神经网络(FNN)和一个解码器网络(DEC)的一系列对。每个FNN执行分类或回归,每个DEC扩展与输入具有相同维数的分类输出。

3.2.1. 建筑物楼层坐标数据集的模型

首先,我们将C-FNN引入到由建筑物、楼层和位置坐标组成的数据集。设FNNi和DECi为第i个FNN和DEC。FNN1执行建筑分类任务,DEC1将其维度扩展到输入维度,即对于输入X,

Y_{b}是建筑物预测。DEC1(Y_{b})与输入具有相同的维度。FNN1和DEC1的组合与自编码器具有相同的架构,但我们没有将DEC1的输出与输入X进行比较[23]。相反,将输入X添加到DEC1的输出中,将原始输入信息传递给楼层分类任务。然后将和式馈送给FNN2进行楼层分类,即:

Y_{f}是一个楼层预测。然后DEC2将输出的维度恢复为X要添加的输入维度,原因与上面提到的相同。最后,

Y_{c}是位置坐标预测。

分类损失和回归损失分别由交叉熵和均方误差计算。采用自适应损失方案时,

式中,CE为交叉熵,MSE为均方误差,B、F、C分别为建筑、楼层、位置坐标目标。因此,针对建筑物-楼层-坐标的数据集的C-FNN架构为两个自编码器和一个前馈跳跃连接神经网络的组合[24],如图1所示。

图1 。建筑物-楼层-坐标的连续前馈神经网络。Yb, Yf和Yc分别表示建筑物,楼层和位置坐标预测。

3.2.2. 楼层-坐标数据集的模型 

楼层和坐标数据集的模型不需要建筑分类。因此,该模型由一个用于楼层预测的自编码器结构和一个用于位置坐标回归的前馈神经网络组成。这个模型的损失变成

图2。楼层坐标连续前馈神经网络。Yf和Yc分别表示楼层和位置坐标预测。

3.3 层次辅助深度神经网络

虽然C-FNN对给定数据进行分层学习,不存在建筑物和楼层数量的可扩展性问题,但它仍然有大量的参数。这是由于跳跃式连接,避免了梯度消失问题,并通过跳几层将输入信息直接传递到后面的层。

在本文中,我们提出了一种新的结构,称为层次辅助深度神经网络,它可以达到C-FNN的效果,并且可以达到纯位置坐标回归模型的效果。由于C-FNN在建筑物和楼层分类方面表现出比纯位置坐标回归模型更好的性能[17],HADNN的架构是由CFNN驱动的。C-FNN中的每对FNN和DEC都变小,插入到神经网络的中间进行位置坐标回归。

3.3.1. 建筑物-楼层-坐标数据集的模型

    详细地说,一个层被分为两个分支——一个用于粗任务,另一个用于主任务——两个分支的输出被连接起来执行进一步的任务。我们用F来定义一个有两个分支的层。然后,用Fu和Fd表示两个分支。对于一个粗糙的任务,一对FNN和DEC后面跟着Fu,并且将DEC的输出扩展到与Fd的输出连接,即:

其中Fp(图中的Fb)是给定任务的前馈网络,Yc是给定任务的预测,©表示串联,然后Y被馈送到下一层。换句话说,每一对FNN和Dec的FNN执行粗任务(例如,建筑物和楼层分类),Dec将其维度扩展到与F d输出相同的维度。连接两个输出,后一层受前一任务结果的影响,并从主网络获取原始输入信息。

采用Eq.(4)中相同的损耗,最终完成的架构如图3所示。

图3 。建筑-楼层-坐标的层次辅助深度神经网络。F和D分别表示FNN和DEC, Yb、Yf和Yc分别表示建筑物、楼层和位置坐标预测。

3.3.2. 楼层-坐标数据集的模型

数据集模型由建筑物、楼层和坐标组成,在坐标回归网络中插入楼层分类网络,在楼层分类网络中插入建筑分类网络。我们通过去除用于建筑物分类的网络,实现了仅适用于Floor-Coordinate数据集的模型。模型如图4所示。

HADNN无需跳过连接,无需主层传递输入信息,减少了参数数量,在分类精度和坐标定位误差方面均优于C-FNN。

3.4 C-FNN与HADNN的比较

C-FNN(前馈神经网络)在进行位置坐标回归之前,通过对建筑物和楼层信息进行分类,得到与建筑物和楼层信息相关的重要特征。自编码器结构是在降低维数的同时去除冗余特征的关键。提取的特征包括关于建筑物和楼层的重要信息,但可能会因为位置坐标回归而丢失信息。将来自解码器的矢量与原始输入样本一起添加,对于补充先前自编码器删除的信息至关重要。两个向量的和传递给底层,用于下级任务。尽管C-FNN提高了粗分类的精度,例如建筑物和地板的精度,但我们观察到C-FNN存在两个问题。(1)由于每个解码器需要将解码器的输出维数恢复到原始输入维数,从而对两个向量求和,因此需要大量的参数。(2)添加向量会累积与先前任务相关的特定特征,难以单独考虑每个特征的重要性。因此,在底层任务中仍然难以提取出在前一任务中未发现的特征。

HADNN的提出是为了解决C-FNN结构带来的两个问题。首先,HADNN具有连接层,连接两个向量(1)包含前信息的向量和(2)包含主要信息的向量。使用串联而不是添加两个向量来保存大量参数,因为解码器的输出不需要恢复与原始输入样本相同的维度。此外,提取的特征的连接允许将两个向量独立连接到下一层。这允许更灵活的过程。

4. Experiments

在本节中,我们描述了公开可用的三个定位数据集并分析了结果。 

4.1. Data description

4.1.1. UJIIndoorLoc

用于评估HADNN的第一个数据集是UJIndoorLoc数据集[13]。数据集由两个数据集组成:trainingData和validationData。它们是在不同时期的三栋建筑中收集的。

TrainingData提供经度、纬度、楼层、建筑、spaceID、相对位置、userID和PhoneID,而vaildationData只提供经度、纬度、楼层、建筑和PhoneID。因此,我们使用trainingData来训练模型,使用validationData来测试。执行三个任务:建筑和楼层分类,以及位置坐标回归(即经纬度回归)。注意图5中trainingData和validationData中建筑和楼层的经纬度分布,坐标相对于建筑分布分布良好,但很难用坐标区分楼层。我们假设仅进行位置坐标回归不能考虑楼层分类。建筑物和楼层的目标与预测值之间的差异以及位置坐标预测的均方差用于计算最终得分,最终得分在竞赛中定义[9]。

其中,如果预测失败,B为1,F分别为楼层目标与楼层预测之间的差值,Dist(C)为位置坐标目标与位置坐标预测之间的欧氏距离。

4.1.2. TUT database

坦佩雷理工大学收集了两个不同的数据集。一篇发表于2017年,本文简称为TUT2017[14]。另一个是2018年发布的,用TUT2018[25]表示。两个数据集都由训练数据集和测试数据集组成,并提供RSS、地板、经度、纬度。TUT2017在5个不同的楼层进行测量,而TUT2018在3个不同的楼层进行测量。与UJIIndoorLoc数据集不同的是,在两种情况下,测试数据集的样本数量都大于训练数据集的样本数量。这两个数据集只包括楼层水平,因此,使用3.2.2和3.3.2中提出的模型。经纬度分布如图6所示。在TUT2017中,测试数据集的楼层分布比训练数据集更密集。在TUT2018中,测试数据集的地板分布在经度在200 ~ 300之间,纬度在120 ~ 150之间没有样本,而训练数据集有。并将最终得分由Eq.(8)修改为

因为数据集确实由楼层和坐标组成。表3列出了所有数据集的汇总。

4.2. Results

本文的主要目标是利用目标的层次信息进行位置坐标回归。我们使用由两个完全连接的隐藏层(128和68个节点)组成的神经网络作为基线,因为它在[8,26]中显示了最好的结果。输出层包括两个具有输出经度和纬度的节点。基于基线结构对C-FNN和HADNN进行了改进。表1和表2总结了建筑物-楼层-坐标和模型的节点数。表中Nb、Nf、Nc、Ninput分别为建筑物、楼层数、坐标信息和输入。

使用余弦退火学习率方案,UJIIndoorLoc数据集最大学习率设置为0.03,TUT数据集最大学习率设置为0.01。在损失函数中,最终任务k的权值设为10。结果表明,粗分类的分类精度提高了。我们将HADNN与先前的位置坐标结果进行比较,并进行粗分类。

4.2.1. UJIIndoorLoc

由于UJIIndoorLoc数据集包含多建筑物和多楼层[6,8,9,20,26],因此对该数据集进行了大量的研究。表5展示了与前面方法的比较。建筑物楼层坐标的baseline、C-FNN和HADNN对比如表4所示。该基线在没有层次辅助信息的情况下具有较高的建筑物估计精度。这可以用4.1.1节中提到的图5来解释。由于楼层不能被位置坐标分隔,基线在楼层估计中显示出较低的精度。然而,C-FNN和HADNN大大提高了楼层估计的精度。此外,两种方法都达到了100%的建筑物估计精度,显示了利用层次辅助信息在室内定位中的重要性。

其中,HADNN的性能最好。C-FNN也取得了与HADNN相当的性能,但它需要的参数是基线的5倍,而HADNN只需要1.2倍。基线结果表明,仅用于位置坐标回归的神经网络不能捕获目标的层次信息。此外,注意到HADNN有两个分支,设计并评估了HADNN-h,即HADNN各层中被减半的节点数。表4显示,HADNN-h在所有任务上都比基线取得了更好的性能,并且比基线具有更少的参数数量。

该数据集被用于2015年国际室内定位与室内导航会议的竞赛。由于本次竞赛尚未将人工神经网络应用于室内定位领域,因此提出了滤波器和定位数学方程。其中表现最好的是RTLS@UM团队。虽然没有人工神经网络算法,但最近的研究将神经网络中的先进算法应用于室内定位[8,20,26]。尽管具有卷积神经网络的架构显示出了比以前工作更高的分类精度,但它们没有进行位置坐标回归。以位置坐标回归为主要研究目标,将HADNN的结果与[8]中应用加权质心神经网络(WC-NN)进行位置坐标回归的网络进行比较。在楼层任务上,HADNN的性能优于加权质心算法,但略低于RTLS@UM算法。虽然HADNN在其他任务中表现出比RTLS@UM更低的性能,但HADNN的最大优势是在测试阶段不需要训练数据集,这在长期计划中节省了大量的存储空间。

4.2.2. TUT database

TUT2017和TUT2018数据集用于测试HADNN的地板坐标。表6和表7列出了所有结果。由于基于位置坐标的楼层分离失败,基线在楼层估计中精度较低。相比之下,CFNN和HADNN的准确率提高了60%。结果表明,HADNN在最终任务和最终得分上优于C-FNN,最多需要1.1倍的基线参数,而C-FNN至少需要3倍。此外,HADNN-h在参数数量较少的所有任务中都取得了比基线更好的性能,如表6所示。

TUT2017在[14]中使用各种算法进行了测试,而TUT2018在[15]中引入。因此,将HADNN结果与文献[14]中著名算法进行比较。在以往的方法中,采用RSS聚类获得的最佳平均二维位置坐标误差为8.09,采用UJI kNN算法获得的最佳地板检测精度为92.26%。在TUT2017中,与RTLS@UM相比,HADNN在所有任务中表现出更好的性能,与之前的所有结果相比,HADNN在楼层任务中表现出更好的性能(见表8)。注意,与其他方法不同,HADNN在测试阶段不需要训练数据集。

5. Conclusion

提出了一种层次辅助深度神经网络(hierarchical auxiliary deep neural network, HADNN),与传统神经网络相比,它不仅解决了粗糙类数量增加带来的可扩展性问题,而且可以进一步降低层次信息误差。在HADNN中,给定数据的分层辅助信息被提供并在训练阶段使用。HADNN预测结构中间的层次辅助信息,并将提取的层次辅助信息的特征传递给下一层。在预测层次辅助信息时,主分支是对被删除信息的补充。文中讨论了室内定位数据中可能出现的各种情况:一种是建筑物、楼层和位置坐标的估计,另一种是楼层和位置坐标的估计。HADNN的最大优点是在测试阶段同时预测建筑物、楼层和位置坐标,不需要分层信息。在三个开源室内定位数据集上对HADNN进行测试:UJIIndoorLoc、TUT2017和TUT2018。为了验证拥有分支的好处,将HADNN与C-FNN进行了比较。连续前馈神经网络(C-FNN)在UJIIndoorLoc、TUT2017和TUT2018数据集上的地板准确率分别提高了60%、50%和30%,在UJIIndoorLoc和TUT数据集上分别需要5倍和3倍的参数。

另一方面,HADNN可以达到与C-FNNs相同的精度,同时具有比C-FNNs参数小得多的优点。最后,HADNN-h取得了更好的估计效果,并且比基线具有更少的参数数量。与第2节中提到的结果相比,HADNN在测试阶段不需要训练数据集,从长远来看可以节省存储空间。尽管HADNN-h的参数数量较少,但每个样本的推理时间(秒)表明,在所有实验中,HADNN-h比基线(这里应该是指C-FNNs)慢。这是因为在实验中,HADNN-h的两个分支在一个NVIDIA V100 GPU上顺序计算。并行计算每个分支将在未来解决这个问题。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值