windows c++版faster-rcnn


本篇博客参照 https://www.cnblogs.com/LaplaceAkuir/p/6445189.html非常感谢这位博主

1. 运行环境

win7
cuda9.1
cudnn7.0
vs2013
caffe版本:https://github.com/Microsoft/caffe

2. 编译caffe

由于faster-rcnn中使用了roi-pooling-layer层,而微软版本编译时并未添加roi_pooling_layer,因此为frcnn编译caffe时,与原始的caffe编译步骤略有不同,所以我们需要将头文件,cu文件和cpp文件手动加入到libcaffe中

具体步骤参照上一篇博客运行python版本的faster-rcnn的编译步骤win7+GPU运行py-faster-rcnn

编译成功之后,将会在 caffe-master 目录下生成 build 文件
在这里插入图片描述

3. 新建frcnn-test项目

在caffe-master/windows下新建test-frcnn项目
在这里插入图片描述
在这里插入图片描述
下载博主提供的test-frcnn代码https://github.com/zhanglaplace/Faster_rcnn_Cplusplus_vs2013
在这里插入图片描述
以及模型文件http://pan.baidu.com/s/1dF88JvV
在这里插入图片描述
还有待会要用到的第三方库https://pan.baidu.com/s/1BTDNR4-mUt9Q1nMV9BtqEw
放到caffe-master目录下在这里插入图片描述

将detection_final文件和proposal_final文件加上ceffemodel后缀
在这里插入图片描述
然后在新建项目中添加刚刚下载的代码
在这里插入图片描述
在这里插入图片描述
然后配置管理器
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
包含目录
在这里插入图片描述
库目录
在这里插入图片描述
链接器–>输入–>附加依赖项
opencv_calib3d2410.lib;opencv_contrib2410.lib;opencv_core2410.lib;opencv_features2d2410.lib;opencv_flann2410.lib;opencv_gpu2410.lib;opencv_highgui2410.lib;

opencv_imgproc2410.lib;opencv_legacy2410.lib;

opencv_ml2410.lib;opencv_objdetect2410.lib;opencv_ts2410.lib;opencv_video2410.lib;caffe.lib;libcaffe.lib;cudart.lib;cublas.lib;

curand.lib;gflags.lib;libglog.lib;libopenblas.dll.a;libprotobuf.lib;leveldb.lib;lmdb.lib;hdf5.lib;hdf5_hl.lib
在这里插入图片描述
设置新建项目为启动项目,编译该项目

我在编译及运行过程遇到的一些错误

编译错误
在这里插入图片描述
解决办法

在test_faster_rcnn中添加

#include   "shlwapi.h"   
#pragma   comment(lib,"shlwapi.lib")

在这里插入图片描述
编译成功
在这里插入图片描述

开始运行
在这里插入图片描述

运行错误
在这里插入图片描述
解决办法

启动调试
在这里插入图片描述
可以看到是layer_factory.hpp出了问题
在这里插入图片描述

CHECK_EQ(registry.count(type), 0)
<< “Layer type " << type << " already registered.”;
registry[type] = creator;

替换成
if (registry.count(type) != 0)
{
std::cout << "Layer type " << type << " already registered. ";
}
else
{
registry[type] = creator;
}

别忘了修改路径
在这里插入图片描述
以及testImage.txt里的路径
在这里插入图片描述
运行结果
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值