Point Cloud Super Resolution with Adversarial Residual Graph Networks

对抗残差图网络的点云超分辨率

摘要
点云超分辨率是3D重建和3D数据理解的基本问题。它以低分辨率(LR)点云作为输入,并生成具有丰富细节的高分辨率(HR)点云。在本文中,我们提出了一种基于图网络和对抗性损失的数据驱动的点云超分辨率方法。所提出网络的关键思想是探索点云的局部相似性,并在LR输入和HR输出之间进行类比。对于前者,我们设计了具有图卷积的深度网络。对于后者,我们建议将残差连接添加到图卷积中,并在输入和输出之间引入skin connections。所提出的网络使用新颖的损失函数进行训练,该函数结合了倒角距离(CD)和图对抗损失。这种损失函数无需人工设计即可自动捕获HR点云的特征。

1、介绍
在为3D打印或动画从现实世界建模对象时,一种常见的方法是首先使用深度扫描设备或3D重建算法获得点云,然后从点云中恢复网格。然而,由于设备的限制或算法的限制,捕获的点云通常是稀疏且嘈杂的,这导致了低质量的网格。
提高恢复网格质量的关键是点云超分辨率,它以LR点云作为输入并生成具有丰富细节和少量噪点的HR点云,如图1所示。
在这里插入图片描述
在本文中,我们旨在通过克服PU-Net的缺陷来提高点云超分辨率的性能。第一个问题是,PU-Net直接回归点坐标,而没有利用LR和HR点云之间的相似性,这使得训练变得困难。第二个问题是,PU-Net提出了一个复杂的损失函数,并对HR点云的均匀分布有很强的假设。手动设计的损失函数往往会过分地适应人类的先验知识,从而无法捕获HR点云的许多其他属性,例如连续性。
图像超分辨率方面的最新工作表明,预测LR和HR图像之间的残差是实现更好精度的一种更理想的方法。因此,为解决第一个问题,我们建议将残差连接引入图卷积网络(GCN),并在输入层和输出层之间添加skin connection。与之前的方法相比,我们的方法中的GCN在两个方面是独特的:(1)我们的GCN的体系结构旨在生成点云,而之前的方法则旨在聚集信息以进行分类。 (2)我们为GCN提出了一个非池化层,以对输入点云进行升采样。为了解决第二个问题,我们设计了基于LS-GAN的图对抗损失。所提出的损失函数比人工设计的损失函数更具表现力,后者可以自动捕获HR点云的特征。也将对抗性损失引入图网络。但是,他们专注于学习图嵌入的分布。因此,采用多层感知器作为鉴别器来处理输入向量。不同的是,我们的目标是区分真实点云和假点云。为了实现这一点,我们提出了一个GCN作为鉴别器来处理生成的点云。
通过这种方式,我们提出了一种新的点云超分辨率方法,称为对抗残差图卷积网络(AR-GCN)。实验表明,该方法在可见数据集和不可见数据集(SHREC15)上均达到了最新的性能。我们方法的贡献是三个方面。首先,我们提出了一种用于点云超分辨率的新颖架构。其次,我们引入图对抗损失来代替手动设计的损失函数。第三,我们提高了可见和不可见数据集的最新性能。

2、相关工作

3、方法
我们的方法包含三部分:自适应对抗损失函数LG,残差GCN G以及图鉴别器D。如图2所示。
在这里插入图片描述
3.1 点云超分辨率
在这里插入图片描述
3.2 AR-GCN
如图2所示,我们的方法包含两个网络:生成器G和鉴别器D。G通过渐进式对输入的LR点云上采样生成HR点云,同时D负责将假HR点云与真实HR点云区分开。为了同时训练G、D两个网络,提出了一个联合损失函数,如(1):在这里插入图片描述
Chamfer Distance 变式,如(2)在这里插入图片描述
初始Chamfer Distance,如(3)
在这里插入图片描述
Lcd测量y和yˆ之间的逐点距离,该距离忽略了由点簇定义的高阶属性,例如连续性。传统方法通常手动将复杂的函数设计为损失,该函数效率低下并且对下层表面有很强的假设。 备选地,我们提出由网络定义并从数据中自动获知的损失函数LG。具体来说,LG是一种图形对抗损失,它是受生成对抗网络(GAN)启发的。在本文中,由于其简单性和有效性,我们采用LS-GAN 作为对抗性损失。LG定义为(4):
在这里插入图片描述
其中鉴别器D通过最小化损失(5)来区分真假HR点云
在这里插入图片描述
3.3 残差图卷积生成器
生成器G建立在GCN上,旨在渐进地对LR点云进行上采样。其中包含三个block,residual graph convolution block,unpooling block 和 feature net.
3.3.1 residual graph convolution block
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
N(p)是连接到p的顶点,如邻接矩阵ε所定义。 但是,没有针对点云的预定义邻接矩阵。 为了解决这个问题,我们将N(p)定义为欧几里得空间中p的k nearest neighbors,其坐标由xin定义。
除了G-conv,我们还将残余连接引入到我们的模块中,因为残余网络通常会导致更快的收敛和更好的结果。 它还有助于利用LR点云和相应的HR点云之间的相似性。
在我们的实验中,将邻居数k设置为8。该块内的所有G-conv运算符具有相同的通道数,即128。通过12个残差层处理输入特征fin和点云xin以获得 fout,而xout与xin相同。

3.3.2 Unpooling Block
在这里插入图片描述
3.3.3 Feature Net
如图3所示,残差图卷积块将点云和相应的要素都作为输入。 但是,生成器只有一个输入,即点云x。为了获得其他输入,即对应的特征f,我们设计了一个简单的名为Feature net的块,该块将点云x作为输入。 具体来说,对于形状为1×3的每个点p∈x,我们首先获得形状为k×3的k个最近邻居。然后,用具有最大池化层的逐点卷积将Pˆ = P-p变换为形状为1×c的fp。
在我们的实验中,k设置为8,而c设置为128。卷积层数设置为3。

3.3.4 渐进超分辨率
我们选择逐步生成HR点云,而不是直接以所需的放大比例对LR点云进行上采样。 如图2所示,每个步骤对点云进行两次上采样。

3.4 Graph Discriminator
为了生成更逼真的HR点云,我们提出了点云的图形对抗损失,它由鉴别符D定义。如图2所示,D由特征网,残差图卷积块和合并块组成。对于特征网,将k设置为8,将c设置为64。卷积层数设置为2。对于残差图卷积块,将k设置为8,同时将c设置为64,设置层数至4。
Pooling Block:给定输入形状为4n × 3的点云xin,我们先用farthest point sampling(FPS)生成形状为n×3的xout。相对应的特征fout由式(8)获得:
在这里插入图片描述

Graph Patch GAN:大多数鉴别器会逐步对输入进行下采样以获得整个输入的单个标志。这样的设计通常导致模糊和令人不愉快的伪像。而不是使用全局标识符,我们构建了一个图形补丁GAN。 具体来说,我们的鉴别器会多次对输入进行下采样,以使输出包含多于1个点。图形补丁GAN强制生成的点云的每个局部补丁都位于实际HR点云的分布上。在我们的实验中,我们将输出点的数量设置为64。

4 实验

本文利用两个数据集进行实验,一个是Train-Test Dataset,用本文的方法进行训练和测试;用另一个看不见的数据集SHREC15直接进行测试而无需训练和微调。
在这里插入图片描述
在这里插入图片描述

### 回答1: ESRGAN是增强型超分辨率生成对抗网络的缩写,它是一种深度学习模型,用于将低分辨率图像转换为高分辨率图像。它使用生成对抗网络(GAN)的方法,通过训练生成器和判别器来提高图像的质量。ESRGAN是目前最先进的超分辨率算法之一,它可以生成更加真实、细节更加丰富的高分辨率图像。 ### 回答2: ESRGAN是一种增强超分辨率生成对抗网络(Enhanced Super-Resolution Generative Adversarial Networks)的算法,它采用了图像增强技术和深度学习的方法,可以将低分辨率(LR)的图像转化为高分辨率(HR)的图像。该算法主要的贡献在于,它可以生成更加逼真的HR图像,从而更好地应用于实际的图像处理领域。 该算法主要是由两个子模型组成的,一个是生成模型(Generator),另一个是判别模型(Discriminator)。生成模型通过学习HR图像和相应的LR图像之间的关系,生成更加逼真的HR图像。而判别模型则评估生成模型生成的HR图像是否真实,从而提高生成模型的准确度。 ESRGAN算法采用特殊的损失函数,即感知损失和自适应增强损失,来优化生成模型。感知损失通过VGG网络来计算生成模型和HR图像之间的差异,以此来调整生成模型的参数。自适应增强损失则用于动态调整生成模型的输出图像的细节层次,使生成模型产生更加真实的输出图像。 ESRGAN算法在图像增强领域取得了显著的成果,其生成的HR图像质量要比先前的SRGAN算法有了很大的提升。因此,ESRGAN算法在实际应用中具有广泛的前景,可以为图像处理领域提供更加高效、准确和可靠的方法。 ### 回答3: ESRGAN(Enhanced Super-Resolution Generative Adversarial Networks)是一种利用深度学习算法进行图像超分辨率的技术。其主要思路是基于GAN模型,通过训练一个生成器去从低分辨率图像生成高分辨率图像,同时以高分辨率的真实图片为样本来训练判别器模型,使其能够区分出生成器生成的图像是否为真实高清图像。 ESRGAN相对于传统的超分辨率算法,具有以下几个优点: 1.超分辨率效果更好。传统的超分辨率算法往往是基于一些数学模型进行插值运算,因此往往会出现图像模糊、失真等问题。而ESRGAN能够通过深度学习算法学习到更加准确的纹理特征,从而可以生成更为真实的高清图像。 2.可扩展性更强。ESRGAN的GAN模型可以通过增加网络深度、增加训练数据等方式对模型进行优化,从而提高图像超分辨率效果。 3.针对性更强。ESRGAN可以针对不同种类的图像进行训练,从而能够对各种类型的图像进行超分辨率处理,具有广泛的适用性。 4.易于应用。ESRGAN训练出的模型可以很方便地应用到实际生产环境中,对于需要进行图像超分辨率处理的应用场景具有很大的帮助作用。 虽然ESRGAN在图像超分辨率方面具有较为突出的优势,但其也存在一些缺点和挑战。比如需要大量的高清图像数据用于训练,需要考虑到训练时间和计算资源的问题;还需要解决一些局部纹理复杂的图像超分辨率问题。总之,ESRGAN是一种非常有潜力的图像超分辨率算法,将有助于推动图像处理技术的进一步发展。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值