离散周期序列

一:连续周期函数
sin(wx)=sin(wx+2π),证明:可令wx=y,则sin(y)=sin(y+2π)。也就是说对于任意连续正弦函数,加上2π或者k2π后函数值不变。
一:离散周期函数
设f(x)=sin(wn),则f(x+N)=sin(wn+wN),根据上面的连续周期函数可知,若要f(x)=f(x+N),则wN=k
2π此等式才会成立,此时N=k*(2π/w)。
1.若2π/w为整数,则N肯定为整数,也就是说当N为f(x)的周期时,这个周期可以被整数等分,比如N=6,则可以6等分。
2,若2π/w为分数,比如为m/M(m M为互为素数的整数),当k为M时,N=k*(2π/w)=k*(m/M)=M*(m/M)=m,也为一个整数了,周期N也可以整数等分了,也就是说N个取样点刚好等于其周期,无偏差。但此时相对于连续周期函数,其周期为连续周期的k倍了,不能取到连续周期函数最小周期。
3.若2π/w为无理数,显然找不到一个k值使得N为整数,此时正弦序列就不可能是周期性序列了

在MATLAB中,实现离散周期序列的傅立叶级数(DFS)展开和恢复原始信号的过程涉及几个关键步骤,这些步骤可以通过编写MATLAB代码来完成。首先,我们定义一个周期序列,然后计算其DFS,最后通过逆变换来恢复原始信号。具体操作如下: 参考资源链接:[MATLAB实现DFSDFT实验分析](https://wenku.csdn.net/doc/33tmv6ie18) 1. 定义周期序列:在MATLAB中,我们首先需要创建一个周期序列,比如一个周期为16点的矩形序列,其中脉冲宽度占周期的1/4。可以通过以下代码实现: ```matlab N = 16; % 序列长度 n = 0:N-1; % 时间序列 xn = [ones(1, N/4), zeros(1, 3*N/4)]; % 定义周期序列 ``` 2. 计算DFS:使用DFS公式计算序列的频域表示。DFS的计算公式可以表示为: ```matlab k = 0:N-1; % 频率序列 Xk = fftshift(fft(xn)); % 使用fft函数计算DFS ``` 3. 绘制时域和频域图像:为了验证DFS的结果,我们可以使用MATLAB的绘图函数来绘制时域信号和频域信号。 ```matlab subplot(2,1,1); % 时域信号 stem(n, xn); title('时域信号'); xlabel('n'); ylabel('xn'); subplot(2,1,2); % 频域信号 stem(k, abs(Xk)); title('频域信号'); xlabel('k'); ylabel('|Xk|'); ``` 4. DFS逆变换:使用DFS逆变换公式恢复原始信号。逆变换的计算公式为: ```matlab x = ifft(ifftshift(Xk)); % 使用ifft函数计算DFS逆变换 ``` 5. 验证结果:我们可以通过绘制原始序列和恢复后的序列来进行验证。 ```matlab figure; stem(n, [xn, x]); % 绘制原始序列和恢复序列 title('原始序列和恢复序列'); xlabel('n'); ylabel('信号值'); legend('原始信号', '恢复信号'); ``` 以上步骤和代码示例展示了如何在MATLAB中使用DFS分析周期序列,并通过逆变换恢复原始信号。通过这些操作,我们可以深入理解DFS的原理,并在实际信号处理中应用这些知识。更多关于DFS和DFT的细节和深入分析,建议参考《MATLAB实现DFSDFT实验分析》文档,该资源提供了一个全面的学习平台,帮助你将理论知识实践相结合。 参考资源链接:[MATLAB实现DFSDFT实验分析](https://wenku.csdn.net/doc/33tmv6ie18)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值