一:连续周期函数
sin(wx)=sin(wx+2π),证明:可令wx=y,则sin(y)=sin(y+2π)。也就是说对于任意连续正弦函数,加上2π或者k2π后函数值不变。
一:离散周期函数
设f(x)=sin(wn),则f(x+N)=sin(wn+wN),根据上面的连续周期函数可知,若要f(x)=f(x+N),则wN=k2π此等式才会成立,此时N=k*(2π/w)。
1.若2π/w为整数,则N肯定为整数,也就是说当N为f(x)的周期时,这个周期可以被整数等分,比如N=6,则可以6等分。
2,若2π/w为分数,比如为m/M(m M为互为素数的整数),当k为M时,N=k*(2π/w)=k*(m/M)=M*(m/M)=m,也为一个整数了,周期N也可以整数等分了,也就是说N个取样点刚好等于其周期,无偏差。但此时相对于连续周期函数,其周期为连续周期的k倍了,不能取到连续周期函数最小周期。
3.若2π/w为无理数,显然找不到一个k值使得N为整数,此时正弦序列就不可能是周期性序列了
离散周期序列
最新推荐文章于 2024-07-16 13:44:04 发布