CNN
https://campoo.cc/cnn/
- 链式反向梯度传导
- 链式法则 ∂ f ∂ x = ∂ f ∂ q ∗ ∂ q ∂ x \frac{\partial f}{\partial x}=\frac{\partial f}{\partial q}*\frac{\partial q}{\partial x} ∂x∂f=∂q∂f∗∂x∂q
- 卷积神经网络
- 卷积层
- 由多个卷积核组成
- 每个卷积核和输入数据卷积运算,形成新的特征图
- 卷积核
- 数目用户定义 (2的倍数GPU并行更高效)
- 卷积核初值随机生成,通过反向传播更新
- 厚度和输入数据一致
- 正向传播
- 反向传播
- 卷积层
- 功能层
- 激活函数
- 池化层
- 降维:减少数据运算量
- max pooling
- average pooling
- 输入层时有 归一化层
- 特征的scale保持一致,加速训练,将输入矩阵中的数据的取值映射到某一个固定的更小的范围吗
- 近邻归一化(LRN)
- Batch Normalization
- BN 依据 mini batch 的数据,而 LRN 仅需要自身,BN 训练中有学习参数,而 LRN 并没有。
- 切分层(Slice layer)
- 在某些应用中,希望独立对某些区域单独学习,比如说人脸识别,可以眼睛一套参数,耳朵一套参数。。好处是可以学习多套参数,得到更强的特征描述能力。
- 融合层(Merge layer)
- 对独立进行特征学习的分支进行融合,来构建高效而精简的特征组合。
- 增维