决策树(理论部分)

决策树是一种用于分类任务的预测模型,基于信息论中的熵概念。本文介绍了决策树的基本概念,包括分类任务、描述性建模和预测性建模。接着,详细讲解了决策树的工作原理,通过一系列属性测试问题来区分不同类别。最后,讨论了Hunt算法,这是一种用于构建决策树的基础算法,通过递归地划分数据集以达到较高的纯度。在构建过程中,选择最佳划分的度量通常基于信息增益,如熵和基尼指数。
摘要由CSDN通过智能技术生成

什么是决策树

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。
这是百度给出的介绍,如果想了解决策树,我们先要了解一些基础概念

  1. 分类任务
    分类任务就是确定对象属于哪个预先定义的目标类别,这是一个普遍存在的问题有非常多的应用,生活中我们就用得上,例如根据电子邮件标题和内容检查是否是垃圾邮件,通过搜索记录判断用户的男女,这一章我们主要介绍决策树的一些理论。
  2. 描述性建模
    分类模型可以用作解释性的工具,用于区分不同类中的对象。例如下表
名称 体温 表皮覆盖 胎生 水生动物 飞行动物 有腿 冬眠 类别
人类 恒温 毛发 哺乳类
蟒蛇 冷血 鳞片 爬行类
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值