什么是决策树
决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。
这是百度给出的介绍,如果想了解决策树,我们先要了解一些基础概念
- 分类任务
分类任务就是确定对象属于哪个预先定义的目标类别,这是一个普遍存在的问题有非常多的应用,生活中我们就用得上,例如根据电子邮件标题和内容检查是否是垃圾邮件,通过搜索记录判断用户的男女,这一章我们主要介绍决策树的一些理论。 - 描述性建模
分类模型可以用作解释性的工具,用于区分不同类中的对象。例如下表
名称 | 体温 | 表皮覆盖 | 胎生 | 水生动物 | 飞行动物 | 有腿 | 冬眠 | 类别 |
---|---|---|---|---|---|---|---|---|
人类 | 恒温 | 毛发 | 是 | 否 | 否 | 是 | 否 | 哺乳类 |
蟒蛇 | 冷血 | 鳞片 | 否 | 否 | 否 | 否 | 是 | 爬行类 |