抗差估计
抗差估计的原理
抗差估计是近代测量平差范畴,又名稳健估计(robust estimate),据杨院士说中科院系统喜欢称之为抗差估计,武大喜欢称之为稳健估计。我们的测量值是随机变量,符合正态分布的,如果出现粗差(gross error)的话,我们在应用最小二差或卡尔曼滤波的时候就会使结果偏离真实值(滤波发散)的现象。我们解决粗差或系统误差的时候,可以从两方面去理解,均值漂移或者方差膨胀,抗差估计属于方差膨胀模型,即均值不变,方差变化的现象。我们可以通过对出现粗差的观测值进行降权处理。
我比较懒,不想打公式,大家应该也看过类似的推导,其实公式跟最小二差一样的,变化的地方就是权阵,换成了等价权,那么影响等价权的又是等价权函数,常见的有huber、IGG III等,我推荐IGG III,代码好实现。
我们在实现的时候,这个权阵很重要,权阵也就是我们说的方差阵的逆,分为独立和非独立,即观测值之间是否相关,是否相关也影响着等价权函数的形式。举一个最简单的独立观测距离的例子吧
抗差估计的例子
我们假设对一段距离进行10次独立观测,10个观测值分别为:5.09、5.10、5.13、5.09、5.12、5.08、5.46、7.81、5.10、5.11(单位为m),数据是我随便编的。
从上面这段描述,我们可以知道测量个数n=10,必要观测m=1,多余观测为n-m=9。独立观测那么权阵就是对角线,先验