Linux上使用独立显卡Tesla T4(测试视频压缩)

背景

将视频处理程序单独部署至K8S之外,使用独立GPU显卡的一台服务器上。
需事先对GPU性能做简单测试。

已通过zabbix对Linux进行了系统资源监控。
已通过Prometheus+Grafana对显卡Tesla T4做了性能监控。
逐步补充,稍等 2023年12月6日

操作

查看当前GPU显卡信息

[ptmauser@gpu ~]$ nvidia-smi 
Wed Dec  6 14:16:26 2023       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 410.129      Driver Version: 410.129      CUDA Version: 10.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla T4            On   | 00000000:00:03.0 Off |                    0 |
| N/A   36C    P8     9W /  70W |      0MiB / 15079MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

初步测试

指定对118MB的MP4视频进行转码操作,使用GPU。

sudo ffmpeg -hwaccel cuvid -i 2.mp4 output.avi #将2.mp4文件转换为output.avi文件。指定使用GPU加速。
watch -n 1 nvidia-smi # 每1秒刷新显卡的性能指标。

在这里插入图片描述
显卡使用监控图如下:
在这里插入图片描述
操作系统监控如下,主要是查看CPU监控:
在这里插入图片描述

### Tesla T4 GPU 规格 Tesla T4 是 NVIDIA 推出的一款基于 Turing 架构的 GPU 芯片,其核心特性在于引入了 Turing Tensor Cores 技术。这款 GPU 支持高效的浮点运算以及整数运算,在机器学习推理和高性能计算领域表现出色[^1]。 #### 主要规格参数 以下是 Tesla T4 的主要技术参数: - **架构**: 基于 Turing 架构。 - **CUDA 核心数量**: 2560 个 CUDA 核心。 - **Tensor 核心数量**: 320 个 Tensor 核心。 - **显存容量**: 提供高达 16GB GDDR6 显存。 - **显存带宽**: 达到约 320 GB/s。 - **功耗**: 设计功耗约为 70W,适合多种部署环境。 - **支持的 CUDA 版本**: 测试显示兼容 CUDA 驱动版本 10.2 及以上[^4]。 通过这些硬件特性的加持,Tesla T4 成为了高效能推理任务的理想选择之一。 --- ### Tesla T4 GPU 的用途 Tesla T4 不仅适用于传统的图形处理任务,还特别针对人工智能推理场景进行了优化设计: #### AI 推理加速 由于内置了强大的 Tensor Core 单元,Tesla T4 在运行深度神经网络模型时能够显著提升吞吐量并降低延迟时间。它广泛应用于自然语言处理、图像分类、目标检测等领域中的在线服务环节。 #### 数据中心灵活性扩展 得益于较低功率需求(仅为70瓦),单台标准服务器可以容纳多张这样的卡来构建密集型AI工作负载解决方案;同时配合软件栈如TensorRT 5 和相应的推理服务器组件,则可进一步简化开发流程并提高资源利用率。 然而值得注意的是,在某些特定环境下可能会遇到一些挑战比如当利用KVM虚拟化平台尝试搭建带有该型号GPU设备映射功能的Windows操作系统实例过程中可能出现PCI Express错误现象。经研究发现这通常发生在加载相关显卡驱动阶段,并且只会在使用预先包含了T4驱动程序镜像文件建立新虚机期间才会显现出来[^2]。 对于初次使用者来说,可以从官方渠道获取最新版Linux系统下的NVIDIA驱动安装包来进行必要的初始化设置操作。例如可以通过命令行工具wget下载指定链接地址上的二进制执行脚本来完成整个过程[^3]: ```bash wget https://cn.download.nvidia.cn/tesla/525.105.17/NVIDIA-Linux-x86_64-525.105.17.run ``` 综上所述,Tesla T4 凭借先进的技术和合理的能耗表现成为现代数据中心不可或缺的一部分,无论是应对复杂的科学模拟还是快速响应用户的查询请求都能游刃有余。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值