自监督|「CoCLR」视频自监督对比学习笔记

🔗

论文地址:https://www.robots.ox.ac.uk/~vgg/research/CoCLR/

Github: https://github.com/TengdaHan/CoCLR

一、背景介绍

  1. 作者背景: VGG (Oxford Visual Geometry Group) 牛津大学视觉几何组发布于 2020 NeurIPS

  2. 在图像和视频处理领域,自监督表征学习近两年的成果来自对比学习:给定数据集,目标是区别样本的“变体”和数据集中的其他样本。“变体”可以来自人造的,比如数据增强、也可以来自天然的,比如同一视频的不同片段出现的物体。常用的方法是实体判别,MoCo, SimCLR 都是这个思路,拉近正样本的距离,推远正样本与负样本的距离。因此对比学习非常灵活,不同的正负样本定义规则就会有不同,比如同一个视频里正负两帧都是正样本,其他视频认为负样本。

  3. 这篇文章提出的问题是:是否实体判别最大化利用数据?没有,原因如下

  • 常见对比学习困难正样本无法辨别:通过实验证明,困难正样本的数据(标签)加入能够提高表现。对比单纯使用无监督 InfoNCE 和使用有监督的 UberNCE 的实验结果。
  • 文章提出的 CoCLR, 效果比上面无监督 InfoNCE 和使用有监督的 UberNCE 的实验结果都好。采用两种 flow 网络和 RGB 网络交替辅助训练,本质是一种新的抽样方法。
  1. UberNCE 是什么?

a. 简单理解是给有类标签数据定义的对比损失函数,本质是 InfoNCE。

b. 2020 NeurlIPS 同时期还有一篇论文是 Supervised Contrastive Loss, 提出扩展对比损失函数,允许每个锚点有多个正对。将对比学习适应于完全监督的 setting。

  1. InfoNCE 与 UberNCE 的区别
  • UberNCE 是 InfoNCE 的上限。如果没差别,说明 InfoNCE 很完美,如果差异很大,说明数据还有信息很多没挖掘。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值