自监督|「CoCLR」视频自监督对比学习笔记

本文深入探讨了VGG团队发布的CoCLR,一种视频自监督学习方法。CoCLR通过交替辅助训练的RGB和光流网络,提升了对比学习的表现。实验表明,这种方法在动作识别和视频抽取等下游任务中表现出色,证明了利用视频的多模态信息对于增强自监督学习的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

🔗

论文地址:https://www.robots.ox.ac.uk/~vgg/research/CoCLR/

Github: https://github.com/TengdaHan/CoCLR

一、背景介绍

  1. 作者背景: VGG (Oxford Visual Geometry Group) 牛津大学视觉几何组发布于 2020 NeurIPS

  2. 在图像和视频处理领域,自监督表征学习近两年的成果来自对比学习:给定数据集,目标是区别样本的“变体”和数据集中的其他样本。“变体”可以来自人造的,比如数据增强、也可以来自天然的,比如同一视频的不同片段出现的物体。常用的方法是实体判别,MoCo, SimCLR 都是这个思路,拉近正样本的距离,推远正样本与负样本的距离。因此对比学习非常灵活,不同的正负样本定义规则就会有不同,比如同一个视频里正负两帧都是正样本,其他视频认为负样本。

  3. 这篇文章提出的问题是:是否实体判别最大化利用数据?没有,原因如下

  • 常见对比学习困难正样本无法辨别:通过实验证明,困难正样本的数据(标签)加入能够提高表现。对比单纯使用无监督 InfoNCE 和使用有监督的 UberNCE 的实验结果。
  • 文章提出的 CoCLR, 效果比上面无监督 InfoNCE 和使用有监督的 UberNCE 的实验结果都好。采用两种 flow 网络和 RGB 网络交替辅助训练,本质是一种新的抽样方法。
  1. UberNCE 是什么?

a. 简单理解是给有类标签数据定义的对比损失函数,本质是 InfoNCE。

b.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值