【深度学习】S2 数学基础 P4 微积分(下)偏导数与链式法则

本文介绍了深度学习中如何利用微积分中的偏导数和链式法则进行模型优化,特别是通过梯度下降法调整参数以最小化损失函数,以及自动微分在简化计算过程中的作用。详细解释了偏导数的概念及其在多元函数中的应用,以及链式法则在神经网络中进行反向传播的关键性。
摘要由CSDN通过智能技术生成

深度学习与微积分

总结来说,深度学习的核心在于优化;优化的重点在于降低损失值;降低损失值需要通过反向梯度下降;而微积分,判断的就是梯度下降的方向和大小。

铺开来说,深度学习的核心目标是通过优化过程来训练模型,以便在给定输入数据时能够产生准确的预测。而为了评估模型的性能并指导优化过程,我们定义了一个 损失函数。它量化了模型的预测与真实值之间的不一致程度。

优化过程的关键在于找到一组模型参数,使得损失函数的值最小。这通常通过 梯度下降 算法实现,其中 “梯度” 就是损失函数对模型参数的导数。梯度指向损失增加最快的方向,因此,为了最小化损失函数,我们选择与梯度相反的方向进行更新,这就是所谓的 “反向梯度下降”。

在这个过程中,导数(或者说梯度)的重要性在于:

  • 方向:导数指示了损失函数下降最快的方向,即梯度的反方向是损失减少的方向。
  • 大小:导数的绝对值表示了损失函数在该方向上下降的速率,即参数更新的大小。

因此,通过计算损失函数对每个参数的导数(梯度),我们可以调整模型参数,以减少损失函数的值,从而训练出性能更好的模型。而自动微分,使得这个过程变得自动化和高效。开发者可以专注于模型结构和数据处理,而不必手动计算复杂的导数。关于自动微分,将在后续博文单开章节进行阐述。

在本篇文章中,我们将关注于微积分的一些核心概念,特别是 偏导数 和 链式法则 这两个关键原理。


偏导数

深度学习函数依赖于许多变量。在博文微积分(上)中,只单纯讨论了导数与微分之于深度学习的重要性。但是实践上看,我们需要将微分的思想推广到多元函数上。

e . g . e.g. e.g. 假设 y = f ( x 1 , x 2 , . . . , x n ) y = f(x_1, x_2, ..., x_n) y=f(x1,x2,...,xn) 是一个具有 n n n 个变量的函数, y y y 关于第 i i i 个参数 x i x_i xi 的偏导数为:
d y d x i = lim ⁡ h → 0 f ( x 1 , . . . , x i − 1 , x i + h , x i + 1 , . . . , x n ) − f ( x 1 , . . . , x i , . . . , x n ) h \frac {dy} {dx_i}=\lim _{h \to 0} \frac {f(x_1, ..., x_{i-1}, x_i+h, x_{i+1}, ..., x_n) - f(x_1, ..., x_i, ..., x_n)} {h} dxidy=h0limhf(x1,...,xi1,xi+h,xi+1,...,xn)f(x1,...,xi,...,xn)

而为了计算 d y d x i \frac {dy} {dx_i} dxidy,我们可以简单地将 x 1 , . . . , x i − 1 , x i + 1 , . . . , x n x_1, ..., x_{i-1}, x_{i+1}, ..., x_n x1,...,xi1,xi+1,...,xn 看作常数,并计算 y y y 关于 x i x_i xi 的导数。


链式法则

在深度学习中,神经网络由多个层组成,每个层的输出又作为下一层的输入。链式法则允许我们将复杂的导数问题分解为多个简单的导数问题。通过链式法则,我们可以从输出层的损失函数反向传播梯度到网络的每一层,从而计算出每个权重的偏导数。

链式传播简单公式:
d y d x = d y d x d u d x \frac {dy} {dx}=\frac {dy} {dx} \frac {du} {dx} dxdy=dxdydxdu

关于链式法则的实践,将在后续博文中进行展现。


如有任何疑问,请联系或留言。

2024.2.14

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脚踏实地的大梦想家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值