基于STM32平台的血氧仪算法程序的实现思路和示例代码

基于STM32平台的血氧仪算法程序的实现思路和示例代码。

  1. 硬件连接

将血氧传感器与STM32开发板连接。具体的连接方式和传感器型号可能会有所不同,建议您查阅传感器的数据手册或参考示例电路图。

  1. 寄存器配置

使用STM32的I2C驱动程序,通过设置寄存器实现对血氧传感器的配置,例如样本率、工作模式等。您可以参考传感器的数据手册来了解具体的寄存器配置。

  1. 信号采集

使用STM32的ADC模块采集血氧传感器输出的光强信号。根据您使用的传感器型号不同,可能需要进行不同的光强信号处理流程。

  1. 算法实现

根据采集到的信号计算血氧值和心率。血氧值和心率都是根据血氧传感器的光强信号变化及其对应的人体生理指标推算出的。血氧算法和心率算法可能会有所不同,下面分别给出基础的实现思路和示例代码:

血氧算法:

  • 截取1秒的光强信号,并通过高通滤波去除直流分量
  • 根据光强信号计算出AC波形,并通过快速傅里叶变换计算出其频域分量
  • 根据测量数据和参考数据的比例计算血氧饱和度值

下面是一个血氧算法的示例代码:

#define SAMPLE_RATE 50

int calculate_spo2(int* ir_buffer, int* red_buffer, int buffer_size);
unsigned long SpO2Calculator(int16_t* buffer, uint16_t length);

int main(void)
{
  // 初始化ADC和I2C驱动程序,配置血氧传感器寄存器,启动数据采集
  
  while (1)
  {
    int ir_buffer[SAMPLE_RATE] = {0};
    int red_buffer[SAMPLE_RATE] = {0};
    int sample_count = 0;
    
    // 采集1秒钟的数据
    while (sample_count < SAMPLE_RATE)
    {
      ir_buffer[sample_count] = read_ir_data();
      red_buffer[sample_count] = read_red_data();
      ++sample_count;
      delay_ms(20);
    }
    
    // 计算血氧值
    int spo2 = calculate_spo2(ir_buffer, red_buffer, sample_count);
    
    // 发送血氧测量数据到显示器或其他输出设备
    send_spo2_data(spo2);
  }
}

int calculate_spo2(int* ir_buffer, int* red_buffer, int buffer_size)
{
  // 高通滤波器
  const float FIR_coeffs[] = {0.00322571321150625, -0.06591556997234167, 
                              0.33882910488606, 0.49999999999999806, 
                              0.33882910488606, -0.06591556997234123, 
                              0.00322571321150603};
  const int FILTER_TAP_NUM = sizeof(FIR_coeffs) / sizeof(FIR_coeffs[0]);
  float iir_filt[3] = {0};
  unsigned long red_dc_level = 0;
  unsigned long ir_dc_level = 0;
  unsigned short red_ac_min = 65535, red_ac_max = 0;
  unsigned short ir_ac_min = 65535, ir_ac_max = 0;

  // 高通滤波器处理
  for (int i=0; i<buffer_size; ++i)
  {
    float raw_ir = ir_buffer[i];
    float raw_red = red_buffer[i];

    // 高通滤波
    float input[1] = {raw_ir};
    float output[1] = {0};
    arm_fir_f32(&FIR_IR, input, output, 1);
    raw_ir = output[0];

(int* buffer, int buffer_size, int* start_idx)
{
int peak = -1;
*start_idx = -1;

for (int i=0; i<buffer_size; ++i)
{
if (buffer[i] >= PEAK_THRESHOLD)
{
if (*start_idx == -1)
*start_idx = i;
else if (peak == -1)
peak = *start_idx + (i - *start_idx)/2;
}
else if (peak != -1)
{
// 如果已经找到峰值,则返回峰值坐标
return peak;
}
}

return peak;
}


注意:以上示例代码仅供参考,具体的实现需要根据您采用的血氧传感器和心率传感器的型号和数据格式来进行修改和优化。

5. 主程序

在主程序中,您需要初始化I2C驱动程序和ADC模块,并通过编写实现3和4步骤的函数以实现血氧仪的完整功能。 您还需要在每次数据采集后将您的测量数据发送到显示器或其他输出设备。下面是一个主程序的舍弃代码

```c
#include <stdlib.h>
#include <stdbool.h>

#define I2C_PORT I2C1
#define I2C_SCL_PIN GPIO_PIN_6
#define I2C_SDA_PIN GPIO_PIN_7

#include "spo2_hr_algorithm.h"
#include "i2c.h"
#include "adc.h"
#include "gpio.h"
#include "delay.h"

int main(void)
{
  // 初始化ADC和I2C驱动程序,配置血氧传感器寄存器和心率传感器寄存器,启动数据采集

  while (1)
  {
    int ir_buffer[SAMPLE_RATE] = {0};
    int red_buffer[SAMPLE_RATE] = {0};
    int sample_count = 0;
    int spo2 = 0;
    int hr = 0;
    
    // 采集1秒钟的光强信号数据
    while (sample_count < SAMPLE_RATE)
    {
      ir_buffer[sample_count] = read_ir_data();
      red_buffer[sample_count] = read_red_data();
      ++sample_count;
      delay_ms(20);
    }
    
    // 计算血氧值
    spo2 = calculate_spo2(ir_buffer, red_buffer, sample_count);
    
    // 采集1秒钟的心率信号数据
    int hr_buffer[SAMPLE_RATE] = {0};
    sample_count = 0;
    while (sample_count < SAMPLE_RATE)
    {
      hr_buffer[sample_count] = read_hr_data();
      ++sample_count;
      delay_ms(20);
    }
    
    // 计算心率
    hr = calculate_hr(hr_buffer, sample_count);
    
    // 发送血氧和心率测量数据到显示器或其他输出设备
    send

 

 

input[0] = raw_red;
arm_fir_f32(&FIR_RED, input, output, 1);
raw_red = output[0];

ir_dc_level += raw_ir; // 累加直流分量
red_dc_level += raw_red;

// 计算光强信号的AC波形
float ir_ac = raw_ir - iir_filt[1];
float red_ac = raw_red - iir_filt[0];
iir_filt[0] = raw_red/2 + iir_filt[2]/2;
iir_filt[1] = raw_ir/2 + iir_filt[3]/2;
iir_filt[2] = raw_red;
iir_filt[3] = raw_ir;

// 计算最大最小AC波形值
if (ir_ac < ir_ac_min)
  ir_ac_min = ir_ac;
if (ir_ac > ir_ac_max)
  ir_ac_max = ir_ac;
if (red_ac < red_ac_min)
  red_ac_min = red_ac;
if (red_ac > red_ac_max)
  red_ac_max = red_ac;

delay_ms(20);

}

// 计算AC波形的幅度、比例和血氧值
unsigned short ir_ac_amplitude = ir_ac_max - ir_ac_min;
unsigned short red_ac_amplitude = red_ac_max - red_ac_min;
unsigned short spo2 = SpO2Calculator(ir_ac_amplitude, red_ac_amplitude);

// 计算信号的直流分量
ir_dc_level /= buffer_size;
red_dc_level /= buffer_size;

return spo2;
}

unsigned long SpO2Calculator(int16_t* buffer, uint16_t length)
{
unsigned long spo2 = 0;
int16_t sorted_buffer[4] = {0};
int16_t upper_bound = buffer[length/2+1];
int16_t lower_bound = buffer[length/5];

int index = 0;
for (int i=0; i<length; ++i)
{
if (buffer[i] > lower_bound && buffer[i] < upper_bound)
{
sorted_buffer[index] = buffer[i];
++index;
if (index == 4)
break;
}
}

return spo2;
}


心率算法:

- 检测信号的峰值,并计算峰值之间的时间间隔
- 使用时间间隔计算心率值

下面是一个心率算法的示例代码:

```c
#define PEAK_THRESHOLD 1000
#define SAMPLE_RATE 50

int calculate_hr(int* buffer, int buffer_size);
int find_peak(int* buffer, int buffer_size, int* start_idx);

int main(void)
{
  // 初始化ADC和I2C驱动程序,配置心率传感器寄存器,启动数据采集
  
  while (1)
  {
    int buffer[SAMPLE_RATE] = {0};
    int sample_count = 0;
    int peak_start_idx = 0;
    int hr = 0;
    
    // 采集1秒钟的数据
    while (sample_count < SAMPLE_RATE)
    {
      buffer[sample_count] = read_hr_data();
      ++sample_count;
      delay_ms(20);
    }
    
    // 计算心率
    hr = calculate_hr(buffer, sample_count);
    
    // 发送心率测量数据到显示器或其他输出设备
    send_hr_data(hr);
  }
}

int calculate_hr(int* buffer, int buffer_size)
{
  static unsigned int last_peak_time_ms = 0;
  int hr = 0;
  
  // 搜索信号中的心搏峰值
  int start_idx = 0;
  int peak_count = 0;
  while (find_peak(&buffer[start_idx], buffer_size-start_idx, &start_idx) != -1)
  {
    ++peak_count;
    
    // 如果找到峰值,则计算心率值,并将心率数据发送给显示器
    if (peak_count > 1)
    {
      unsigned long time_since_last_peak_ms = millis() - last_peak_time_ms;
      if ((time_since_last_peak_ms > 300) && (time_since_last_peak_ms < 2000))
      {
        hr = 60000 / time_since_last_peak_ms;
      }
      last_peak_time_ms = millis();
    }
    
    if (start_idx + PEAK_THRESHOLD > buffer_size)
      break;
  }
  
  return hr;
}

int find_peak

_measure_data(spo2, hr);
}
}


希望这些信息对您有所帮助。请记得在实现过程中进行测试和调整,并确保您的代码满足应用需求和性能要求。

复制

重试

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sz_arladin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值