torch.nn.Embedding理解

看官方的文档之后,自己的理解,供以后学习之用。

#输入的batch为2,每个batch有4个索引 
input = torch.tensor([[1,2,4,5],[4,3,2,9]]) 
#字典中包含的词有10个,每个3维
embedding_matrix = torch.rand(10, 3)
F.embedding(input, embedding_matrix)
tensor([[[ 0.8490,  0.9625,  0.6753],
             [ 0.9666,  0.7761,  0.6108],
             [ 0.6246,  0.9751,  0.3618],
             [ 0.4161,  0.2419,  0.7383]],
             [[ 0.6246,  0.9751,  0.3618],
             [ 0.0237,  0.7794,  0.0528],
             [ 0.9666,  0.7761,  0.6108],
             [ 0.3385,  0.8612,  0.1867]]])

所以最后得到了一个shape为(2,4,3)的一个tensor。

### 如何在PyTorch中使用`nn.Embedding` #### 创建嵌入层 为了创建一个嵌入层,在 PyTorch 中可以利用 `torch.nn.Embedding` 类。此方法允许指定词汇表大小以及每个词所需的维度数,即嵌入尺寸。这有助于将离散的数据转换成稠密的向量形式[^1]。 ```python import torch from torch import nn vocab_size = 1000 # 假设词汇表中有1000个不同的词语 embedding_dim = 32 # 设定每个词被表示为长度为32的向量 embedding_layer = nn.Embedding(vocab_size, embedding_dim) ``` #### 输入与输出形状 当给定了索引列表作为输入时,这些整数值代表了来自预定义词汇表的位置。通过调用上述构建好的嵌入对象,并传入张量形式的一批索引,即可获得相应位置上词项所对应的学习到的向量表达。值得注意的是,输入应该是一维或多维 LongTensor 或者是自动转换为此类型的其他类型;而输出将会保持相同的前置维度结构不变,仅在其最后增加了一个由设定参数决定的新轴——也就是所谓的“通道”,其大小等于之前设置过的嵌入维度[^3]。 ```python input_indices = torch.LongTensor([1, 2, 4, 5]) # 示例性的四个词的索引 embedded_output = embedding_layer(input_indices) print(f"Input shape: {input_indices.shape}") print(f"Output shape after embedding: {embedded_output.shape}") ``` #### 训练过程中的更新机制 默认情况下,`nn.Embedding` 的权重矩阵是可以参与反向传播过程中梯度计算并随之调整优化的一部分。这意味着随着模型整体性能提升的同时也会不断改进对于各个具体类别/单词的最佳低维空间定位方式[^4]。 ```python criterion = nn.MSELoss() optimizer = torch.optim.SGD(embedding_layer.parameters(), lr=0.01) target = torch.randn(4, embedding_dim) # 随机生成目标值用于演示目的 output = embedding_layer(input_indices) loss = criterion(output, target) loss.backward() optimizer.step() # 更新参数 ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值