python判断字符串相似度

参考Python 字符串相似性的几种度量方法

安装python-Levenshtein

直接去官网下载适合自己系统的python-Levenshtein.whl文件,进入文件目录,安装,如我的

pip install python_Levenshtein-0.12.0-cp37-cp37m-win_amd64.whl

测试字符串相似度算法

参考了上述链接的代码

# -*- coding: utf-8 -*-

import difflib
# import jieba
import Levenshtein

str1 = "我的骨骼雪白 也长不出青稞"
str2 = "雪的日子 我只想到雪中去si"

# 1. difflib
seq = difflib.SequenceMatcher(None, str1,str2)
ratio = seq.ratio()
print('difflib similarity1: ', ratio)

# difflib 去掉列表中不需要比较的字符
seq = difflib.SequenceMatcher(lambda x: x in ' 我的雪', str1,str2)
ratio = seq.ratio()
print('difflib similarity2: ', ratio)

# 2. hamming距离,str1和str2长度必须一致,描述两个等长字串之间对应位置上不同字符的个数
# sim = Levenshtein.hamming(str1, str2)
# print 'hamming similarity: ', sim

# 3. 编辑距离,描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括 插入、删除、替换
sim = Levenshtein.distance(str1, str2)
print('Levenshtein similarity: ', sim)

# 4.计算莱文斯坦比
sim = Levenshtein.ratio(str1, str2)
print('Levenshtein.ratio similarity: ', sim)

# 5.计算jaro距离
sim = Levenshtein.jaro(str1, str2 )
print('Levenshtein.jaro similarity: ', sim)

# 6. Jaro–Winkler距离
sim = Levenshtein.jaro_winkler(str1 , str2 )
print('Levenshtein.jaro_winkler similarity: ', sim)

输出结果为

difflib similarity1: 0.14814814814814814
difflib similarity2: 0.0
Levenshtein similarity: 13
Levenshtein.ratio similarity: 0.14814814814814814
Levenshtein.jaro similarity: 0.4061355311355312
Levenshtein.jaro_winkler similarity: 0.4061355311355312

参与评论 您还未登录,请先 登录 后发表或查看评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页

打赏作者

snowyseasons

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值