Probabilistic Model Selection with AIC, BIC, and MDL

1. Introduction

Model selection is the problem of choosing one from among a set of candidate models. An approach to model selection involves using probabilistic statistical measures that attempt to quantify both the model performance on the training dataset and the complexity of the model.

Examples include the Akaike and Bayesian Information Criterion and the Minimum Description Length. The benefit of these information criterion statistics is that they do not require a hold-out test set, although a limitation is that they do not take the uncertainty of the models into account. 

In this tutorial, you will know:

    - Model selection is the challenge of choosing one among a set of candidate models.

    - Akaike and Bayesian Information Criterion are two ways of scoring a model based on its log-likelihood and complexity.

    - Minimum Description Length provides another scoring method from information theory that can be shown to be equivalent to BIC.

 

2. The Challenge of Model Selection 

Model selection is the process of fitting multiple models on a given dataset and choosing one over all others.

"Model selection: estimating the performance of different models in order to choose the best one."

This may apply in unsupervised learning, e.g., choosing a clustering model, or supervised learning, e.g., choosing a predictive model for a regression or classification task. There are many common approaches that may be used for model selection. For example, in the case of supervised learning, the three most common approaches are:

    - Train, validate, and test datasets;

    - Resampling methods;

    - Probabilistic statistics.

A third approach to model selection attempts to combine the complexity of the model with the performance of the model into a score.

 

3. Probabilistic Model Selection

Probabilistic model selection (or information criteria) provides an an anlytical technique for scoring and chossing among candidate models. Models are scored both on their performance on the training dataset and based on the complexity of the model.

    - Model performance. How well a candidate model has performed on the training datasets.

    - Model complexity. How complicated the trained candidate model is after training.

Model performance may be evaluated using a probabilistic framework, such as log-likelihood under the framework of maximum likelihood estimation. Model complexity may be evaluated as the number of degrees of freedom or parameters in the model.

 

4. Akaike Information Criterion

Akaike infomration criterion (AIC) is derived from a frequentist framework and defined generally for logistic regression as:

                                            AIC = - \frac{2}{N} \times LL + 2 \times \frac{k}{N}

where N is the number of examples in the training datasets, LL is the log-likelihood of the model on the training datsets, and k is the number of parameters in the model.

def calculate_aic(n, mse, num_params):
    aic = n * log(mse) + 2 * num_params
    return aic

 

5. Bayesain Information Criterion 

                                          BIC = -2 \times LL + log(N) \times k

Unlike AIC, BIC penalizes the model more for its complexity, meaning that more complex models will have a worse score.

def calculate_bic(n, mse, num_params):
    bic = n * log(mse) + num_params * log(n)
    return bic

 

6. Minimum Description Length

                                        MDL = - \rm log (P(\theta)) - log(P(y|X, \theta))

 

 

 

 

 

 

 

### 回答1: Diffusion Probabilistic Model是一种基于随机漫步的时间序列生成方法。以下是使用Python实现Diffusion Probabilistic Model的代码示例: ```python import numpy as np import matplotlib.pyplot as plt # 模拟参数 T = 1000 alpha = 0.05 sigma = 0.1 # 生成模拟数据 x = np.zeros(T) x[0] = np.random.normal(0, 1) for t in range(1, T): x[t] = x[t-1] + alpha * np.random.normal(0, 1) + sigma * np.random.normal(0, 1) # 绘制时间序列 plt.plot(x) plt.title("Diffusion Probabilistic Model") plt.xlabel("Time") plt.ylabel("Value") plt.show() ``` 上述代码首先定义了模拟参数T、alpha和sigma。其中T为生成时间序列的长度,alpha为漂移系数,sigma为扩散系数。然后使用numpy库生成了长度为T的空序列x,并将第一个值初始化为标准正态分布的随机数。 接下来使用for循环迭代生成剩余的T-1个数据。每次生成的新值x[t],都是由前一个值x[t-1]加上随机漂移和随机扩散得到的。 最后使用matplotlib库绘制生成的时间序列。运行代码后,即可得到Diffusion Probabilistic Model生成的时间序列的可视化图形。 ### 回答2: diffusion probabilistic model是一种基于随机扩散过程的时间序列模型。它可以用于模拟具有随机波动的数据。下面是一个使用Python生成时间序列的diffusion probabilistic model的代码示例: ```python import numpy as np import matplotlib.pyplot as plt def diffusion_probabilistic_model(num_steps, initial_value, diffusion_coefficient): # 创建一个空数组来存储时间序列 time_series = np.zeros(num_steps) time_series[0] = initial_value # 根据扩散过程生成时间序列 for t in range(1, num_steps): delta = np.random.normal(0, 1) * np.sqrt(diffusion_coefficient) time_series[t] = time_series[t-1] + delta return time_series # 输入参数 num_steps = 100 # 时间步数 initial_value = 0 # 初始值 diffusion_coefficient = 0.1 # 扩散系数 # 生成时间序列 time_series = diffusion_probabilistic_model(num_steps, initial_value, diffusion_coefficient) # 绘制时间序列图 plt.plot(time_series) plt.xlabel('Time') plt.ylabel('Value') plt.title('Diffusion Probabilistic Model') plt.show() ``` 在上面的代码中,我们定义了一个名为`diffusion_probabilistic_model`的函数,该函数接受三个参数:时间步数`num_steps`、初始值`initial_value`和扩散系数`diffusion_coefficient`。函数内部通过随机生成服从正态分布的增量来模拟时间序列的扩散过程。 然后,我们定义了输入参数的值,并调用`diffusion_probabilistic_model`函数生成时间序列。最后,使用Matplotlib库绘制了生成的时间序列图。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值