1. 问题引入
贝叶斯公式是一个用于计算条件概率的方法。尽管贝叶斯定律十分简单,但真正深层次理解并且可以在任何场景下使用还是需要进一步来学习。
In this tutorial, 我们将在多种实际场景下使用贝叶斯公式来进行理解。
2. 什么是贝叶斯公式?
条件概率是给定一个事件发生的情况下,另外一个事件发生的概率。条件概率可以通过联合概率来计算:
P
(
A
∣
B
)
=
P
(
A
;
B
)
P
(
B
)
.
P(A|B) = \frac{P(A; B)}{P(B)}.
P(A∣B)=P(B)P(A;B).
此外,还可以通过另外一个事件的条件概率来计算:
P
(
A
∣
B
)
=
P
(
B
∣
A
)
×
P
(
A
)
P
(
B
)
.
P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}.
P(A∣B)=P(B)P(B∣A)×P(A).
这个公式也被称为贝叶斯公式,它提供了一种不使用联合概率来计算条件概率的方法。通常情况下,P(B)不可获得,但可以通过来计算:
P
(
B
)
=
P
(
B
∣
A
)
×
P
(
A
)
+
P
(
B
∣
n
o
t
A
)
×
P
(
n
o
t
A
)
.
P(B) =P(B|A) \times P(A) + P(B| not \ A) \times P(not \ A).
P(B)=P(B∣A)×P(A)+P(B∣not A)×P(not A).
3. 命名贝叶斯公式中的各项
P(A|B):后验概率;
P(A):先验概率;
P(B|A):似然概率;
P(B):证据。
贝叶斯公式可以被理解为:后验概率 = (似然概率 X 先验概率) / 证据;
举个例子:烟(smoke)和火焰(fire)事件,我们想要计算观测到smoke后,fire发生的概率 P(fire | smoke),给定的概率有 P(fire)火焰的先验概率、P(smoke | fire)发生火后出现烟的似然概率, P(smoke)证据概率。
3. Example 1
事件 B:年老的人(超过80岁)摔倒;
事件 A:年老的人死亡;
事件 A|B:摔倒后导致死亡;
先验概率 P(A) = 0.1;(年老的人死亡的概率)
证据 P(B) = 0.05;(年老的人摔倒的概率)
似然概率 P(B|A) = 0.07;(已经死去的人,发生摔倒的概率)
通过贝叶斯公式来计算年老的人摔倒后死亡的概率:
P
(
A
∣
B
)
=
P
(
B
∣
A
)
×
P
(
A
)
P
(
B
)
=
0.14
P(A|B) = \frac{P(B|A) \times P(A)}{P(B)} = 0.14
P(A∣B)=P(B)P(B∣A)×P(A)=0.14
4. Example 2
事件A:我们收到垃圾邮件;P(A) = 0.02;
事件B:系统检测为垃圾邮件;
事件B|A:当收到垃圾邮件后,系统能检测到;P(B|A) = 0.99;
事件B|not A:当收到正常邮件后,系统检测为垃圾邮件;P(B| not A) = 0.001;
现在我们需要计算:系统检测为垃圾邮件时,其是垃圾邮件的概率 P(A|B)
P
(
A
∣
B
)
=
P
(
B
∣
A
)
×
P
(
A
)
P
(
B
)
=
0.99
×
0.02
0.99
×
0.02
+
0.001
×
0.98
=
0.953
P(A|B) = \frac{P(B|A) \times P(A)}{P(B)} = \frac{0.99 \times 0.02}{0.99 \times 0.02 + 0.001 \times 0.98} = 0.953
P(A∣B)=P(B)P(B∣A)×P(A)=0.99×0.02+0.001×0.980.99×0.02=0.953
5. Example 3
事件A:说谎;P(A) = 0.02;
事件B | A:人说谎的时候,测谎仪预测为说谎;P(B|A) = 0.72;
事件not B | not A: 人说真话的时候,测谎仪预测为真话;P(not B | not A) = 0.97;
计算测谎仪预测为说谎(B)时,人说谎的概率(A):P(A|B)
P
(
A
∣
B
)
=
P
(
B
∣
A
)
×
P
(
A
)
P
(
B
)
=
0.72
×
0.02
0.97
×
0.02
+
0.03
×
0.98
=
0.329.
P(A|B) = \frac{P(B|A) \times P(A)}{P(B)} = \frac{0.72 \times 0.02}{0.97 \times 0.02 + 0.03 \times 0.98} = 0.329.
P(A∣B)=P(B)P(B∣A)×P(A)=0.97×0.02+0.03×0.980.72×0.02=0.329.