CNN_SVM

先用CNN提取特征,之后用SVM分类,平台是TensorFlow 1.6.0-rc0,python2.7

这个是我的一个小小的测试,下面这个链接是我主要参考的,在实现过程中,本来想使用vgg16或者VGG19做迁移来提取特征,但是担心自己的算力不够,还有就是UCI手写数据集本来就是一个不大的数据集,使用vgg16或vgg19有点杀鸡用牛刀的感觉。于是放弃做迁移。

我的代码主要是基于下面链接来的。参考链接点击打开链接

这个代码主要是,通过一个CNN网络,在网络的第一个全连接层也就h_fc1得到的一个一维的256的一个特征向量,将这个特征向量作为的svm的输入。主要的操作是在代码行的140-146.    同时代码也实现了CNN的过程(读一下代码就知道)。

如果你要是知道你的CNN的结构,然后就知道在全连接层输出的其实就是一个特征向量。直接用这个特征向量简单处理输入到svm中就可以。

具体的参考论文和代码数据集等,百度网盘

目标是对UCI的手写数字数据集进行识别,样本数量大约是1600个。图片大小为16x16。要求必须使用SVM作为二分类的分类器。
本文重点是如何使用卷积神经网络(CNN)来提取手写数字图片特征,主要想看如何提取特征的请直接看源代码部分的94行左右,只要对tensorflow有一点了解就可以看懂。在最后会有完整的源代码、处理后数据的分享链接。转载请保留原文链接,谢谢。


UCI手写数字的数据集

源数据下载:http://oddmqitza.bkt.clouddn.com/archivetempsemeion.data
其中前256维为16x16的图片,后10维为one hot编码的标签。即0010000000代表2,1000000000代表0.
组合成图片大约是这样的:
image233

卷积和池化形象理解

卷积
image1

池化
image2

仔细的看,慢慢想就能明白CNN提取特征的思想巧妙之处。
能明白这两点,剩下的东西就和普通的神经网络区别不大了。

为什么要用CNN提取特征?

1.由于卷积和池化计算的性质,使得图像中的平移部分对于最后的特征向量是没有影响的。从这一角度说,提取到的特征更不容易过拟合。而且由于平移不变性,所以平移字符进行变造是无意义的,省去了再对样本进行变造的过程。
2.CNN抽取出的特征要比简单的投影、方向,重心都要更科学。不会让特征提取成为最后提高准确率的瓶颈、天花板
3.可以利用不同的卷积、池化和最后输出的特征向量的大小控制整体模型的拟合能力。在过拟合时可以降低特征向量的维数,在欠拟合时可以提高卷积层的输出维数。相比于其他特征提取方法更加灵活

CNN卷积层简介

CNN,有两个卷积(5*5)池化层(2*2的maxPooling),然后两个全连接层h_fc1和h_fc2,我只使用第一个全连接层h_fc1就提取了特征。

然后中间的激活函数使用的是relu函数,同时为了防止过拟合使用了dropout的技巧。然后这个代码中其实是实现了完整的CNN的的预测的,损失使用交叉熵,优化器使用了AdamOptimizer。

图片大小的变化:

最后从全连接层提取的256维的向量。输入svm。

 

SVM分类

SVM采用的是RBF核(高斯核),C取0.9

也可以尝试线性核,我试了一下效果差不多,但是没有高斯核分类效率好。

流程和实验设计

 

流程:整理训练网络的数据,对样本进行处理 -> 建立卷积神经网络-> 将数据代入进行训练 -> 保存训练好的模型(从全连接层提取特征) -> 把数据代入模型获得特征向量 -> 用特征向量代替原本的输入送入SVM训练 -> 测试时同样将h_fc1转换为特征向量之后用SVM预测,获得结果。

使用留出法样本处理和评价:

1.将原样本随机地分为两半。一份为训练集,一份为测试集

2.重复1过程十次,得到十个训练集和十个对应的测试集

3.取十份训练集中的一份和其对应的测试集。代入到CNN和SVM中训练。

4.依次取训练集和测试集,则可完成十次第一步。

5.将十次的表现综合评价,十次验证取平均值,计算正确率、准确率、召回率、F1值。比如 F1 分数 , 用于测量不均衡数据的精度. 


 
 
  1. # coding=utf8
  2. import random
  3. import numpy as np
  4. import tensorflow as tf
  5. from sklearn import svm
  6. from sklearn import preprocessing
  7. right0 = 0.0 # 记录预测为1且实际为1的结果数
  8. error0 = 0 # 记录预测为1但实际为0的结果数
  9. right1 = 0.0 # 记录预测为0且实际为0的结果数
  10. error1 = 0 # 记录预测为0但实际为1的结果数
  11. for file_num in range( 10):
  12. # 在十个随机生成的不相干数据集上进行测试,将结果综合
  13. print( 'testing NO.%d dataset.......' % file_num)
  14. ff = open( 'digit_train_' + file_num.__str__() + '.data')
  15. rr = ff.readlines()
  16. x_test2 = []
  17. y_test2 = []
  18. for i in range(len(rr)):
  19. x_test2.append(list(map(int, map(float, rr[i].split( ' ')[: 256]))))
  20. y_test2.append(list(map(int, rr[i].split( ' ')[ 256: 266])))
  21. ff.close()
  22. # 以上是读出训练数据
  23. ff2 = open( 'digit_test_' + file_num.__str__() + '.data')
  24. rr2 = ff2.readlines()
  25. x_test3 = []
  26. y_test3 = []
  27. for i in range(len(rr2)):
  28. x_test3.append(list(map(int, map(float, rr2[i].split( ' ')[: 256]))))
  29. y_test3.append(list(map(int, rr2[i].split( ' ')[ 256: 266])))
  30. ff2.close()
  31. # 以上是读出测试数据
  32. sess = tf.InteractiveSession()
  33. # 建立一个tensorflow的会话
  34. # 初始化权值向量
  35. def weight_variable(shape):
  36. initial = tf.truncated_normal(shape, stddev= 0.1)
  37. return tf.Variable(initial)
  38. # 初始化偏置向量
  39. def bias_variable(shape):
  40. initial = tf.constant( 0.1, shape=shape)
  41. return tf.Variable(initial)
  42. # 二维卷积运算,步长为1,输出大小不变
  43. def conv2d(x, W):
  44. return tf.nn.conv2d(x, W, strides=[ 1, 1, 1, 1], padding= 'SAME')
  45. # 池化运算,将卷积特征缩小为1/2
  46. def max_pool_2x2(x):
  47. return tf.nn.max_pool(x, ksize=[ 1, 2, 2, 1], strides=[ 1, 2, 2, 1], padding= 'SAME')
  48. # 给x,y留出占位符,以便未来填充数据
  49. x = tf.placeholder( "float", [ None, 256])
  50. y_ = tf.placeholder( "float", [ None, 10])
  51. # 设置输入层的W和b
  52. W = tf.Variable(tf.zeros([ 256, 10]))
  53. b = tf.Variable(tf.zeros([ 10]))
  54. # 计算输出,采用的函数是softmax(输入的时候是one hot编码)
  55. y = tf.nn.softmax(tf.matmul(x, W) + b)
  56. # 第一个卷积层,5x5的卷积核,输出向量是32维
  57. w_conv1 = weight_variable([ 5, 5, 1, 32])
  58. b_conv1 = bias_variable([ 32])
  59. x_image = tf.reshape(x, [ -1, 16, 16, 1])
  60. # 图片大小是16*16,,-1代表其他维数自适应
  61. h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
  62. h_pool1 = max_pool_2x2(h_conv1)
  63. # 采用的最大池化,因为都是1和0,平均池化没有什么意义
  64. # 第二层卷积层,输入向量是32维,输出64维,还是5x5的卷积核
  65. w_conv2 = weight_variable([ 5, 5, 32, 64])
  66. b_conv2 = bias_variable([ 64])
  67. h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
  68. h_pool2 = max_pool_2x2(h_conv2)
  69. # 全连接层的w和b
  70. w_fc1 = weight_variable([ 4 * 4 * 64, 256])
  71. b_fc1 = bias_variable([ 256])
  72. # 此时输出的维数是256维
  73. h_pool2_flat = tf.reshape(h_pool2, [ -1, 4 * 4 * 64])
  74. h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
  75. # h_fc1是提取出的256维特征,很关键。后面就是用这个输入到SVM中
  76. # 设置dropout,否则很容易过拟合
  77. keep_prob = tf.placeholder( "float")
  78. h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
  79. # 输出层,在本实验中只利用它的输出反向训练CNN,至于其具体数值我不关心
  80. w_fc2 = weight_variable([ 256, 10])
  81. b_fc2 = bias_variable([ 10])
  82. y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2) + b_fc2)
  83. cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
  84. # 设置误差代价以交叉熵的形式
  85. train_step = tf.train.AdamOptimizer( 1e-4).minimize(cross_entropy)
  86. # 用adma的优化算法优化目标函数
  87. correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
  88. accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
  89. sess.run(tf.global_variables_initializer())
  90. for i in range( 3000):
  91. # 跑3000轮迭代,每次随机从训练样本中抽出50个进行训练
  92. batch = ([], [])
  93. p = random.sample(range( 795), 50)
  94. for k in p:
  95. batch[ 0].append(x_test2[k])
  96. batch[ 1].append(y_test2[k])
  97. if i % 100 == 0:
  98. train_accuracy = accuracy.eval(feed_dict={x: batch[ 0], y_: batch[ 1], keep_prob: 1.0})
  99. # print "step %d, train accuracy %g" % (i, train_accuracy)
  100. train_step.run(feed_dict={x: batch[ 0], y_: batch[ 1], keep_prob: 0.6})
  101. # 设置dropout的参数为0.6,测试得到,大点收敛的慢,小点立刻出现过拟合
  102. print( "test accuracy %g" % accuracy.eval(feed_dict={x: x_test3, y_: y_test3, keep_prob: 1.0}))
  103. # def my_test(input_x):
  104. # y = tf.nn.softmax(tf.matmul(sess.run(x), W) + b)
  105. for h in range(len(y_test2)):
  106. if np.argmax(y_test2[h]) == 7:
  107. y_test2[h] = 1
  108. else:
  109. y_test2[h] = 0
  110. for h in range(len(y_test3)):
  111. if np.argmax(y_test3[h]) == 7:
  112. y_test3[h] = 1
  113. else:
  114. y_test3[h] = 0
  115. # 以上两步都是为了将源数据的one hot编码改为1和0,我的学号尾数为7
  116. x_temp = []
  117. for g in x_test2:
  118. x_temp.append(sess.run(h_fc1, feed_dict={x: np.array(g).reshape(( 1, 256))})[ 0])
  119. # 将原来的x带入训练好的CNN中计算出来全连接层的特征向量,将结果作为SVM中的特征向量
  120. x_temp2 = []
  121. for g in x_test3:
  122. x_temp2.append(sess.run(h_fc1, feed_dict={x: np.array(g).reshape(( 1, 256))})[ 0])
  123. clf = svm.SVC(C= 0.9, kernel= 'linear') # linear kernel
  124. # clf = svm.SVC(C=0.9, kernel='rbf') #RBF kernel
  125. # SVM选择了RBF核,C选择了0.9
  126. # x_temp = preprocessing.scale(x_temp) #normalization
  127. clf.fit(x_temp, y_test2)
  128. # SVM选择了RBF核,C选择了0.9
  129. print( 'svm testing accuracy:')
  130. print(clf.score(x_temp2, y_test3))
  131. for j in range(len(x_temp2)):
  132. # 验证时出现四种情况分别对应四个变量存储
  133. # 这里报错了,需要对其进行reshape(1,-1)
  134. if clf.predict(x_temp2[j].reshape( 1, -1))[ 0] == y_test3[j] == 1:
  135. right0 += 1
  136. elif clf.predict(x_temp2[j].reshape( 1, -1))[ 0] == y_test3[j] == 0:
  137. right1 += 1
  138. elif clf.predict(x_temp2[j].reshape( 1, -1))[ 0] == 1 and y_test3[j] == 0:
  139. error0 += 1
  140. else:
  141. error1 += 1
  142. accuracy = right0 / (right0 + error0) # 准确率
  143. recall = right0 / (right0 + error1) # 召回率
  144. print( 'svm right ratio ', (right0 + right1) / (right0 + right1 + error0 + error1))
  145. print ( 'accuracy ', accuracy)
  146. print ( 'recall ', recall)
  147. print ( 'F1 score ', 2 * accuracy * recall / (accuracy + recall)) # 计算F1值

testing NO.0 dataset.......
2019-02-26 10:56:38.034846: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:898] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-02-26 10:56:38.035075: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1212] Found device 0 with properties:
name: GeForce GTX 1050 Ti major: 6 minor: 1 memoryClockRate(GHz): 1.62
pciBusID: 0000:01:00.0
totalMemory: 3.95GiB freeMemory: 3.51GiB
2019-02-26 10:56:38.035086: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1312] Adding visible gpu devices: 0
2019-02-26 10:56:38.200398: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 3244 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
test accuracy 0.964868
svm testing accuracy:
0.989962358846
testing NO.1 dataset.......
2019-02-26 10:56:51.302524: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1312] Adding visible gpu devices: 0
2019-02-26 10:56:51.302645: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 2702 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
test accuracy 0.951066
svm testing accuracy:
0.987452948557
testing NO.2 dataset.......
2019-02-26 10:57:03.968067: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1312] Adding visible gpu devices: 0
2019-02-26 10:57:03.968175: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 2702 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
test accuracy 0.958595
svm testing accuracy:
0.993726474279
testing NO.3 dataset.......
2019-02-26 10:57:16.675414: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1312] Adding visible gpu devices: 0
2019-02-26 10:57:16.675521: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 2702 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
test accuracy 0.961104
svm testing accuracy:
0.989962358846
testing NO.4 dataset.......
2019-02-26 10:57:29.536615: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1312] Adding visible gpu devices: 0
2019-02-26 10:57:29.536743: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 2702 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
test accuracy 0.961104
svm testing accuracy:
0.987452948557
testing NO.5 dataset.......
2019-02-26 10:57:42.186688: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1312] Adding visible gpu devices: 0
2019-02-26 10:57:42.186795: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 2702 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
test accuracy 0.953576
svm testing accuracy:
0.987452948557
testing NO.6 dataset.......
2019-02-26 10:57:55.075373: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1312] Adding visible gpu devices: 0
2019-02-26 10:57:55.075485: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 2702 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
test accuracy 0.956085
svm testing accuracy:
0.988707653701
testing NO.7 dataset.......
2019-02-26 10:58:08.269529: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1312] Adding visible gpu devices: 0
2019-02-26 10:58:08.269642: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 2702 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
test accuracy 0.971142
svm testing accuracy:
0.993726474279
testing NO.8 dataset.......
2019-02-26 10:58:21.115406: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1312] Adding visible gpu devices: 0
2019-02-26 10:58:21.115523: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 2702 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
test accuracy 0.941029
svm testing accuracy:
0.981179422836
testing NO.9 dataset.......
2019-02-26 10:58:34.057336: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1312] Adding visible gpu devices: 0
2019-02-26 10:58:34.057453: I tensorflow/core/common_runtime/gpu/gpu_device.cc:993] Creating TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 2702 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1050 Ti, pci bus id: 0000:01:00.0, compute capability: 6.1)
test accuracy 0.95734
svm testing accuracy:
0.994981179423
('svm right ratio ', 0.9894604767879548)
('accuracy ', 0.9753424657534246)
('recall ', 0.9151670951156813)
('F1 score ', 0.9442970822281167)

使用CNN之后用SVM分类。这个操作有很多。比如RCNN(Regions with CNN features)用于目标检测的网络的一系列的算法【SPP-Net】。基本就是CNN之后svm。

 

参考文献

[1] Deep Learning using Linear Support Vector Machines, ICML 2013

[2] How transferable are features in deep neural networks?, Jason Yosinski,1 Jeff Clune,2 Yoshua Bengio, NIPS 2014

[3] CNN Features off-the-shelf: an Astounding Baseline for Recognition, Ali Sharif Razavian Hossein Azizpour Josephine Sullivan Stefan Carlsson CVAP, KTH (Royal Institute of Technology). CVPR 2014

主要参考第一篇,具体的论文我把论文放到百度网盘中了:

https://pan.baidu.com/s/1Ghh4nfjfBKDyA47fc6M4JQ

有相同的CNN之后使用SVM的一些GitHub的开源代码:

https://github.com/Fdevmsy/Image_Classification_with_5_methods

https://github.com/efidalgo/AutoBlur_CNN_Features

https://github.com/tomrunia/TF_FeatureExtraction

 原文:

https://blog.csdn.net/qq_27756361/article/details/80479278

 

----------------更多绿色版本软件及机器视觉学习资料----------------------- 请关注关注公众号:机器视觉智能解决方案
  • 2
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
### 回答1: 辛辛那提数据是一个数据集,用于故障分类的研究和分析。该数据集包含了大量的故障样本和对应的标签,可用于训练机器学习模型。 而"cnn_svm代码rar_cnn故障分类"是一份用于故障分类的代码资源。其中的CNN代表卷积神经网络,SVM代表支持向量机,是两种常用的机器学习算法。这个代码资源使用CNNSVM算法来对故障进行分类。 这份代码资源可以通过互联网文档类资源网站CSDN进行下载。CSDN是一个专注于技术与创新的社区,在该网站上可以找到大量的技术文档、代码资源等。通过在CSDN上搜索相关关键词,可以找到并下载这份代码资源。 总之,辛辛那提数据和"cnn_svm代码rar_cnn故障分类-互联网文档类资源-csdn下载"都是与故障分类相关的资源,辛辛那提数据是一个数据集,而"cnn_svm代码rar_cnn故障分类"是一份代码资源。这份代码资源可以通过CSDN进行下载。 ### 回答2: 辛辛那提数据和cnn_svm代码rar_cnn故障分类是一个互联网文档类资源,可以从CSDN网站上进行下载。该资源的内容包括了辛辛那提数据集和CNN_SVM代码,用于故障分类的目的。 辛辛那提数据是一个用于故障分类的数据集。该数据集是通过收集和整理大量故障样本而得到的,其中包含了不同类型的故障样本,如机械故障、电气故障等。这些样本经过标记和特征提取后,可以用于训练和测试故障分类模型。 CNN_SVM代码是一种基于卷积神经网络(CNN)和支持向量机(SVM)的故障分类方法。该代码的设计思想是先使用CNN网络对故障数据进行特征提取和表示学习,然后将提取出的特征输入到SVM分类器中进行分类。这种方法结合了CNN网络的良好特征提取能力和SVM分类器的高效性能,在故障分类任务上具有较好的准确率和效果。 从CSDN网站上下载辛辛那提数据和cnn_svm代码rar_cnn故障分类资源,可以通过搜索或在相应的类别下找到该资源。下载后,可以解压并查看其中的数据和代码文件,根据需要进行使用和处理。 总的来说,辛辛那提数据和cnn_svm代码rar_cnn故障分类是一个包含了辛辛那提数据集和故障分类代码的互联网文档类资源,可以用于研究和开发故障分类相关的工作。 ### 回答3: 辛辛那提数据和cnn_svm代码rar_cnn故障分类-互联网文档类资源-csdn下载是指位于辛辛那提地区的一组数据和一个基于卷积神经网络(CNN)和支持向量机(SVM)的代码包,用于进行故障分类任务。该资源可以在CSDN网站上进行下载。 辛辛那提数据指的是在辛辛那提地区收集到的一系列与故障相关的数据。这些数据可能包括传感器采集到的信号、设备状态记录、故障排查报告等。这些数据是进行故障分类任务的基础,通过分析这些数据,可以识别出不同类型的故障情况,并进行有效的故障预测和故障处理。 cnn_svm代码rar_cnn故障分类是一个用于故障分类任务的代码包。其中的cnn指的是卷积神经网络,是一种深度学习模型,可以对数据进行特征提取和分类。而svm则是支持向量机,是一种经典的机器学习算法,主要用于分类任务。通过结合这两种算法,可以提高故障分类的准确性和稳定性。 该资源提供了一个.rar压缩文件,可以在CSDN网站上进行下载。下载后,可以解压得到包含cnn_svm代码的文件夹。通过运行这些代码,可以进行故障分类任务。具体的操作步骤和使用方法可能需要参考该资源的说明文档或代码注释。通过使用这个代码包,用户可以方便地进行故障分类任务,从而提高设备的维修效率和工作稳定性。 总之,辛辛那提数据和cnn_svm代码rar_cnn故障分类-互联网文档类资源-csdn下载提供了一组故障分类相关的数据和代码,可以帮助用户进行故障预测和分类任务,对于提高设备维修效率和工作稳定性具有重要意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值