节点的度(Degree of a node)、“入度”(In-degree)、“出度”(Out-degree)

文章探讨了图论中节点度的概念,包括在无向图和有向图中的区别,以及度数在衡量节点在网络中重要性和结构特性中的应用。特别提到了在社交网络中高度节点的影响力和互联网食物网中的幂律分布。邻接矩阵在计算度数时的作用也被提及。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在图论和网络分析中,“节点的度”(Degree of a node)是指与该节点直接相连的边的数量。在一个无向图中,每条边连接两个节点,对于每个节点来说,它的度就是与它相连的边的总数。在一个有向图中,节点的度可以进一步细分为“入度”(In-degree)和“出度”(Out-degree):

  • 入度是指指向该节点的边的数量。
  • 出度是指从该节点出发指向其他节点的边的数量。

节点的度是一个重要的度量指标,因为它可以帮助理解节点在图中的重要性。通常,度数较高的节点被认为在网络中更为重要或中心,例如在社交网络分析中,一个拥有更多朋友(即度数更高)的人可能会被视为更有影响力。在某些网络中,如互联网或食物网,节点的度分布可以揭示网络的结构特性,如存在小数量的高度节点和大量低度节点的情况,这种分布通常称为幂律分布或无标度网络。

度矩阵和邻接矩阵的关系

计算图的度数,邻接矩阵通常更为直接和方便:https://mapengsen.blog.csdn.net/article/details/135897339

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值