利用DeepSeek-R1与RAG(Retrieval-Augmented Generation,检索增强生成)技术可以快速搭建本地知识库。
为确保本地知识库的高效搭建,需先准备DeepSeek-R1模型、相关文档/数据集及部署工具(如Ollama),随后安装Ollama并部署DeepSeek-R1,同时选择并配置文本嵌入模型,最后收集/整理文档并确保其唯一标识符和文本内容,利用文本嵌入模型转换文档为向量以构建快速检索的索引。
一、RAG(检索增强生成)
检索增强生成(Retrieval-Augmented Generation,RAG)是什么?检索增强生成是一种利用来自私有或专有数据源的信息来补充文本生成的技术。
大型语言模型(LLMs)虽然功能强大,但仍面临挑战,如产生不准确信息(幻觉)、知识过时、推理不透明等问题。为了应对这些挑战,检索增强生成(RAG)技术应运而生。RAG通过结合外部数据库的知识,提高了信息生成的准确性和可靠性,尤其适用于需要丰富知识的任务。此外,RAG还能让模型持续更新知识,并整合特定领域的信息,从而实现LLMs内在知识与外部动态数据库的协同融合。
RAG的核心技术是什么?检索、生成和增强是RAG框架中的三个核心组件,它们相互协作、共同作用于整个框架中,以实现高效、准确、多样化的信息生成和处理。
检索负责从知识库中快速准确获取信息,生成根据检索结果和用户输入生成期望输出,增强则对信息进行额外处理以提高输出质量和多样性。
-
检索(Retrieval):负责从知识库中快速准确找到与输入查询相关的信息,通过关键词、向量或深度学习等方法提高检索效率。
-
生成(Generation):根据检索到的信息和用户输入生成符合期望的输出,采用模板、序列到序列模型或大型语言模型等技术,并进行后处理和微调以提高生成质量。
-
增强(Augmentation):在生成前后对信息进行额外处理或补充,通过知识增强、多样性增强和后处理增强等手段提高输出的质量和多样性。
二、Ollama + RAGFlow搭建知识库
如何使用DeepSeek-R1 + RAG搭建本地知识库?利用DeepSeek-R1与RAG技术搭建本地知识库,需准备模型、部署工具,安装Ollama并配置嵌入模型,整理文档并转换为向量索引,以实现高效检索与生成。
一、Ollama本地化部署DeepSeek-R1
Ollama是一款开源的本地化大模型部署工具,用户可以通过Ollama轻松安装、配置和运行各种开源大模型(DeepSeek-R1)。
通过Ollama官网下载并安装软件,准备DeepSeek-R1模型后,在模型详情页复制运行命令并在终端中执行,完成模型在本地的部署与配置,以便进行交互使用。
-
下载并安装Ollama:
-
访问Ollama的官方网站(https://ollama.com/download),根据电脑系统(macOS、Linux、Windows)选择对应的版本下载。
-
双击安装程序并按照提示完成安装。安装完成后,如果在顶部菜单栏中看到Ollama的图标,即表示Ollama正在运行状态。
-
-
准备DeepSeek-R1模型:
-
在Ollama的官网中,找到并点击“Models”选项。
-
在搜索框中输入“deepseek-r1”,找到并点击进入DeepSeek-R1的详情页。
-
选择合适的模型参数版本(如1.5B、7B、14B等),这些参数与模型的复杂度和处理能力相关。
-
-
运行DeepSeek-R1模型:
-
在Ollama的模型详情页中,复制运行模型的命令(如“ollama run deepseek-r1:7b”)。
-
打开电脑的终端(或命令提示符),将命令粘贴到终端窗口中,并按下回车键。等待安装完成后,DeepSeek-R1模型即可在本地运行。
-
二、RAGFlow搭建个人知识库
RAGFlow是一个基于深度文档理解的开源检索增强生成(Retrieval-Augmented Generation,RAG)引擎,可以使用RAGFlow框架搭建个人知识库,并利用该知识库进行问答、信息检索等操作。
-
在RAGFlow系统中,点击上传按钮,选择本地要上传到知识库的文件。
-
支持的文件格式可能包括常见的文档格式(如PDF、DOCX等)、文本文件等。上传时请注意文件格式的支持情况。
-
上传完成后,系统将显示文件的相关信息,如分块数、上传日期、解析方法和解析状态等。
-
在模型提供商配置区域,选择使用的模型提供商(使用DeepSeek模型服务),并将对应的API key粘贴到指定位置。
-
如果选择搭建本地大模型(DeepSeek),也需要在此处进行相应的配置,确保RAGFlow能够与本地模型进行通信和交互。
-
等待知识库文件解析完成后,进入聊天界面。