(CVPR 2019)Universal Domain adaptation笔记

(CVPR 2019)Universal Domain Adaptation

文章链接

本文主要是针对Universal Domain Adaptation问题提出的方法
Universal Domain Adaptation是指目标域的标签空间未知的无监督领域自适应(Unsupervised Domain Adaptation)问题,如下图所示

网络结构

在这里插入图片描述

训练部分,图像 x x x输入进入特征提取器 F F F,得到特征向量 z z z

D ′ D' D是一个非对抗领域判别器, D D D是一个对抗领域判别器,用于判断输入 z z z是源域数据的可能性。 D D D和传统的对抗领域判别器类似,用于混淆源域和目标域的特征数据。不同点在于,损失函数中加入了样布属于公共标签的概率作为权值

损失函数

E G = E ( x , y ) ∼ p L ( y , G ( F ( x ) ) ) E_G=E_{(x,y) \sim p}L(y,G(F(x))) EG=E(x,y)pL(y,G(F(x)))

E D ′ = − E x ∼ p l o g ( D ′ ( F ( x ) ) − E x ∼ q l o g ( 1 − D ′ ( F ( x ) ) ) E_{D'}=-E_{x \sim p}log(D'(F(x))-E_{x \sim q}log(1-D'(F(x))) ED=Explog(D(F(x))Exqlog(1D(F(x)))

E D = − E x ∼ p ω s ( x ) l o g ( D ( F ( x ) ) ) − E x ∼ q ω t ( x ) l o g ( 1 − D ( F ( x ) ) ) E_D=-E_{x \sim p}\omega^s(x)log(D(F(x)))-E_{x \sim q}\omega^t(x)log(1-D(F(x))) ED=Expωs(x)log(D(F(x)))Exqωt(x)log(1D(F(x)))

优化目标

m a x D ( m i n F , G ( E G − λ E D ) ) max_D(min_{F,G}(E_G-\lambda E_D)) maxD(minF,G(EGλED))

m i n D ′ ( E D ′ ) min_{D'}(E_{D'}) minD(ED)

D D D反传的时候包含一个梯度翻转层,,这样在优化 F F F G G G的时候就与D的优化形成了对抗

ω s ( x ) 和 ω t ( x ) \omega^s(x)和\omega^t(x) ωs(x)ωt(x)分别代表源域样本属于公共样本空间的概率和目标域样本属于公共样本空间的概率


novel内容

文中提出了两个假设

1. E x ∼ p C s ‾ d ′ ^ > E x ∼ p C d ′ ^ > E x ∼ q C d ′ ^ > E x ∼ q C t ‾ d ′ ^ E_{x \sim p_{\overline{C_s}}} \hat{d'}>E_{x \sim p_C} \hat{d'}>E_{x \sim q_C} \hat{d'}>E_{x \sim q_{\overline{C_t}}} \hat{d'} ExpCsd^>ExpCd^>ExqCd^>ExqCtd^

2. E x ∼ q C t ‾ H ( y ^ ) > E x ∼ q C H ( y ^ ) > E x ∼ p C H ( y ^ ) > E x ∼ p C s ‾ H ( y ^ ) E_{x \sim q_{\overline{C_t}}} H(\hat{y})>E_{x \sim q_C} H(\hat{y})>E_{x \sim p_C} H(\hat{y})>E_{x \sim p_{\overline{C_s}}} H(\hat{y}) ExqCtH(y^)>ExqCH(y^)>ExpCH(y^)>ExpCsH(y^)

其中
p C s ‾ p_{\overline{C_s}} pCs代表源域中与目标域中类别重叠部分的数据的分布
p C p_C pC代表源域中与目标域中类别重叠部分的数据的分布,
q C t ‾ q_{\overline{C_t}} qCt代表目标域中与源域中类别重叠部分的数据的分布,
q C q_C qC代表目标域中不与源域中类别重叠部分的数据的分布,

以上的假设基于直觉得出,首先观察第一个假设, d ^ ′ \hat{d}' d^代表样本属于源域的概率,文章认为只属于源域的类别的数据更容易被划分成源域的类别,那么 d ^ ′ \hat{d}' d^就会越高。而在公共类别中,源域和目标域数据相互影响, d ^ ′ \hat{d}' d^会相对较低,而只属于目标域的类别的数据 d ^ ′ \hat{d}' d^会最低

H ( y ^ ) H(\hat{y}) H(y^)代表伪标签 y ^ \hat{y} y^的熵,熵越大代表分类结果越确定,越小代表越不确定,思考方式类似于假设1

可以根据以上两个假设构造出 ω s ( x ) 和 ω t ( x ) \omega^s(x)和\omega^t(x) ωs(x)ωt(x)的计算方法

ω s ( x ) = H ( y ^ ) l o g ∣ C s ∣ − d ^ ′ ( x ) \omega^s(x)=\frac{H(\hat{y})}{log|C_s|}-\hat{d}'(x) ωs(x)=logCsH(y^)d^(x)

ω t ( x ) = d ^ ′ ( x ) − H ( y ^ ) l o g ∣ C s ∣ \omega^t(x)=\hat{d}'(x)-\frac{H(\hat{y})}{log|C_s|} ωt(x)=d^(x)logCsH(y^)

构造方法的思路是,对于源域数据,我们希望 ω s ( x ) \omega^s(x) ωs(x)更大,而对于目标域数据,我们希望 ω t ( x ) \omega^t(x) ωt(x)越大


测试阶段

根据 G G G给出的分类结果判定类别,根据 D ′ D' D给出的 ω t ( x ) \omega^t(x) ωt(x)判断其类别是不是unknown,即是不是源域中出现过的类别

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
CVPR 2019中发表了一篇题为“迁移学习:无监督领域自适应的对比适应网络(Contrastive Adaptation Network for Unsupervised Domain Adaptation)”的论文。这篇论文主要介绍了一种用于无监督领域自适应的对比适应网络。 迁移学习是指将从一个源领域学到的知识应用到一个目标领域的任务中。在无监督领域自适应中,源领域和目标领域的标签信息是不可用的,因此算法需要通过从源领域到目标领域的无监督样本对齐来实现知识迁移。 该论文提出的对比适应网络(Contrastive Adaptation Network,CAN)的目标是通过优化源领域上的特征表示,使其能够适应目标领域的特征分布。CAN的关键思想是通过对比损失来对源领域和目标领域的特征进行匹配。 具体地说,CAN首先通过一个共享的特征提取器来提取源领域和目标领域的特征表示。然后,通过对比损失函数来测量源领域和目标领域的特征之间的差异。对比损失函数的目标是使源领域和目标领域的特征在特定的度量空间中更加接近。最后,CAN通过最小化对比损失来优化特征提取器,以使源领域的特征能够适应目标领域。 该论文还对CAN进行了实验验证。实验结果表明,与其他无监督领域自适应方法相比,CAN在多个图像分类任务上取得了更好的性能,证明了其有效性和优越性。 综上所述,这篇CVPR 2019论文介绍了一种用于无监督领域自适应的对比适应网络,通过对源领域和目标领域的特征进行对比学习,使得源领域的特征能够适应目标领域。该方法在实验中展现了较好的性能,有望在无监督领域自适应任务中发挥重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值