2020CVPR去雾-Domain Adaptation for Image Dehazing Yuanjie

这篇文章针对人为构造的训练数据集与真实雾霾景象存在区别而导致训练好的模型在实际应用中效果不好的问题进行了探究

整体思想是:已知两个数据集,合成数据集(含label)S和真实数据集R,分别通过S2R网络和R2S网络生成另外两个数据集S->R和R->S,共四个数据集。S和R->S两个数据集共享生成网络参数来训练去雾,R和S->R两个数据集共享另一个生成网络(与前一个网络结构相同)参数来训练去雾。

整个网络的细节部分很多,因而有非常多的loss
在这里插入图片描述

损失函数

1、转换部分
1)对抗损失,二选一举例

从图像和特征两个角度分别计算
2)借鉴与cyclegan,两个变换应该具有连续型,定义连续型损失为
在这里插入图片描述
3)映射损失(没看懂)
在这里插入图片描述
转换部分总结
在这里插入图片描述
2、去雾部分
1)有标签的数据采用均方损失mse,二选一举例
在这里插入图片描述
2)没有标签的数据采用水平、垂直梯度最小化和暗通道值最小化,二选一举例

在这里插入图片描述
在这里插入图片描述
针对1)2)部分另一组数据
在这里插入图片描述
3)两个去雾网络(针对合成数据和真实数据)的生成结果应该尽可能相同,引入连续型损失
在这里插入图片描述
所有损失函数总结
在这里插入图片描述

损失函数太多,超参有点多。如果以后遇到训练效果好而实战效果差的情况可以考虑该方法。

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Domain adaptation is an active, emerging research area that attempts to address the changes in data distribution across training and testing datasets. With the availability of a multitude of image acquisition sen- sors, variations due to illumination, and viewpoint among others, com- puter vision applications present a very natural test bed for evaluating domain adaptation methods. In this monograph, we provide a compre- hensive overview of domain adaptation solutions for visual recognition problems. By starting with the problem description and illustrations, we discuss three adaptation scenarios namely, (i) unsupervised adap- tation where the “source domain” training data is partially labeled and the “target domain” test data is unlabeled, (ii) semi-supervised adaptation where the target domain also has partial labels, and (iii) multi-domain heterogeneous adaptation which studies the previous two settings with the source and/or target having more than one domain, and accounts for cases where the features used to represent the data in each domain are different. For all these topics we discuss existing adaptation techniques in the literature, which are motivated by the principles of max-margin discriminative learning, manifold learning, sparse coding, as well as low-rank representations. These techniques have shown improved performance on a variety of applications such as object recognition, face recognition, activity analysis, concept clas- sification, and person detection. We then conclude by analyzing the challenges posed by the realm of “big visual data”, in terms of the generalization ability of adaptation algorithms to unconstrained data acquisition as well as issues related to their computational tractability, and draw parallels with the efforts from vision community on image transformation models, and invariant descriptors so as to facilitate im- proved understanding of vision problems under uncertainty.
CVPR 2019中发表了一篇题为“迁移学习:无监督领域自适应的对比适应网络(Contrastive Adaptation Network for Unsupervised Domain Adaptation)”的论文。这篇论文主要介绍了一种用于无监督领域自适应的对比适应网络。 迁移学习是指将从一个源领域学到的知识应用到一个目标领域的任务中。在无监督领域自适应中,源领域和目标领域的标签信息是不可用的,因此算法需要通过从源领域到目标领域的无监督样本对齐来实现知识迁移。 该论文提出的对比适应网络(Contrastive Adaptation Network,CAN)的目标是通过优化源领域上的特征表示,使其能够适应目标领域的特征分布。CAN的关键思想是通过对比损失来对源领域和目标领域的特征进行匹配。 具体地说,CAN首先通过一个共享的特征提取器来提取源领域和目标领域的特征表示。然后,通过对比损失函数来测量源领域和目标领域的特征之间的差异。对比损失函数的目标是使源领域和目标领域的特征在特定的度量空间中更加接近。最后,CAN通过最小化对比损失来优化特征提取器,以使源领域的特征能够适应目标领域。 该论文还对CAN进行了实验验证。实验结果表明,与其他无监督领域自适应方法相比,CAN在多个图像分类任务上取得了更好的性能,证明了其有效性和优越性。 综上所述,这篇CVPR 2019论文介绍了一种用于无监督领域自适应的对比适应网络,通过对源领域和目标领域的特征进行对比学习,使得源领域的特征能够适应目标领域。该方法在实验中展现了较好的性能,有望在无监督领域自适应任务中发挥重要作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值