大语言模型
文章平均质量分 81
大语言模型相关的训练技巧、部署推理、评估推理
hanscalZheng
关注NLP领域,专注QA和对话以及知识图谱。
展开
-
用于文档理解的局部特征
文章介绍了DocFormerv2,一种用于视觉文档理解的多模态Transformer模型,通过结合视觉、语言和空间特征,并采用精心设计的无监督任务进行预训练,以实现对多模态信息的更好理解,在多个数据集上展示了最先进的性能。论文题目: DocFormerv2: Local Features for Document Understanding论文链接: https://arxiv.org/abs/2306.01733PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-10-31 11:15:36 · 283 阅读 · 0 评论 -
大语言模型能通过求解器提示进行路径规划吗?
文章探讨了通过结合求解器生成的反馈(如碰撞提示、自由空间提示等),如何提升大型语言模型(LLMs)在路径规划问题中的表现。实验表明,这种反馈能帮助模型解决中等难度问题,但对更复杂的问题仍然效果有限。论文题目: Can LLMs plan paths with extra hints from solvers?论文链接: https://arxiv.org/abs/2410.05045PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-10-31 11:11:56 · 241 阅读 · 0 评论 -
用于无监督域适应的提示分布对齐
文章介绍了一种名为Prompt-based Distribution Alignment (PDA)的方法,通过双分支提示调整范式在无监督域适应中对视觉语言模型进行分布对齐,以提高模型的判别能力和减轻源域与目标域之间的分布差距。论文题目: Prompt-based Distribution Alignment for Unsupervised Domain Adaptation论文链接: https://arxiv.org/abs/2312.09553PS: 欢迎大家扫码关注公众号。原创 2024-10-28 11:44:13 · 372 阅读 · 0 评论 -
揭示更多用于深度伪造检测的伪造线索
文章提出了一种新的深度伪造检测框架,通过提取多个非重叠的局部特征并融合成全局语义丰富的特征,结合局部信息损失和全局信息损失,以提高检测准确性和泛化能力。论文题目: Exposing the Deception: Uncovering More Forgery Clues for Deepfake Detection论文链接: https://arxiv.org/abs/2403.01786PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-10-28 11:36:23 · 276 阅读 · 0 评论 -
视觉语言模型能玩《黑神话:悟空》吗?
文章探讨了利用视觉语言模型(VLMs)在动作角色扮演游戏《黑神话:悟空》中的应用,并提出了一种名为VARP的新型智能体框架,该框架能够在仅依赖视觉输入的情况下执行复杂的游戏内操作,如战斗任务。论文题目: Can VLMs Play Action Role-Playing Games?论文链接: https://arxiv.org/abs/2409.12889PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-10-28 11:32:02 · 379 阅读 · 0 评论 -
将 Vision Mamba 和 LSTM 结合,以实现高效准确的空间时间预测
本文提出了一种名为VMRNN的新架构,通过融合Vision Mamba模块与LSTM,有效解决了视频级别未来帧预测任务中的时空动态捕捉问题,并在多个数据集上展示了其优越的性能和效率。论文题目:VMRNN: Integrating Vision Mamba and LSTM for Efficient and Accurate Spatiotemporal Forecasting论文链接:https://arxiv.org/abs/2403.16536PS: 欢迎大家扫码关注公众号。原创 2024-10-28 11:27:01 · 907 阅读 · 0 评论 -
使用大型语言模型构建主动协作型智能体
本文提出了一种名为ProAgent的新框架,利用大型语言模型创建能够在多智能体系统中与不同类型队友高效协作的主动智能体,并展示了其在Overcooked-AI环境中的优越性能。论文题目: ProAgent: Building Proactive Cooperative Agents with Large Language Models论文链接: https://arxiv.org/abs/2308.11339PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-10-28 11:22:27 · 400 阅读 · 0 评论 -
对具身人工智能的呼吁
文章倡导将具身人工智能(E-AI)作为迈向通用人工智能(AGI)的关键步骤,并强调了E-AI相较于当前的人工智能进步,如大型语言模型(LLMs),在实现具备感知、行动、记忆和学习能力的智能体方面的必要性和理论框架。论文题目: A call for embodied AI论文链接: https://arxiv.org/abs/2402.03824PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-10-20 23:14:46 · 897 阅读 · 0 评论 -
从图灵测试到“通”测试
文章提出了通测试(Tong Test),一种在动态实体环境中基于能力和价值导向的评估系统,用于评价人工通用智能(AGI)的表现,并探讨了无限任务生成、自我驱动任务创建、价值对齐、因果理解及实体化等AGI系统的关键特征。论文题目: The Tong Test: Evaluating Artificial General Intelligence Through Dynamic Embodied Physical and Social Interactions。原创 2024-10-20 23:10:29 · 607 阅读 · 0 评论 -
通过身份感知学习的多智能体表达式通信
本文提出了一种名为IDEAL的新方法,通过在消息传递过程中加入智能体身份信息,增强了基于图神经网络的多智能体通信协议的表达能力,从而提高了多智能体系统在复杂任务中的性能和智能体行为的多样性。论文题目: Expressive Multi-Agent Communication via Identity-Aware Learning论文链接: https://ojs.aaai.org/index.php/AAAI/article/view/29683PS: 欢迎大家扫码关注公众号。原创 2024-10-14 11:21:09 · 374 阅读 · 0 评论 -
随机多智能体系统中的自然策略能力
文章探讨了在随机多智能体系统中应用自然策略进行PATL和PATL*逻辑模型检测的复杂性,并分析了其在不同条件下的计算难度。论文题目: Natural Strategic Ability in Stochastic Multi-Agent Systems论文链接: https://arxiv.org/abs/2401.12170PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-10-14 11:13:19 · 665 阅读 · 0 评论 -
从任务结构到世界模型: LLMs知道些什么?
文章探讨了大型语言模型(LLMs)是否拥有知识的问题,提出了LLMs具有由特定能力集定义的“工具性知识”,并讨论了这种知识与人类基于世界模型的“世俗知识”之间的关系及差异。论文题目: From task structures to world models: What do LLMs know?论文链接: https://arxiv.org/abs/2310.04276PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-10-14 11:06:53 · 575 阅读 · 0 评论 -
基于情境依赖因果影响的多智能体协作强化学习
本文提出了一种新的多智能体强化学习算法——情境依赖因果影响协作多智能体强化学习(SCIC),通过建模多智能体系统中因果关系图谱并利用条件互信息来量化智能体间的情境依赖因果影响,进而设计了一种内在奖励机制以增强智能体间的协作。论文题目: Situation-Dependent Causal Influence-Based Cooperative Multi-Agent Reinforcement Learning论文链接: https://arxiv.org/abs/2312.09539。原创 2024-10-14 11:02:27 · 252 阅读 · 0 评论 -
多智能体协作强化学习中的知识共享
本文提出了一种名为谨慎乐观知识共享(CONS)的新框架,该框架通过让多智能体系统中的成员共享正负两面的经验知识,并谨慎地融合这些知识来促进早期探索效率及提升对不利建议的抗性,从而改善了多智能体强化学习中的合作表现。论文题目: Cautiously-Optimistic Knowledge Sharing for Cooperative Multi-Agent Reinforcement Learning论文链接: https://arxiv.org/abs/2312.12095。原创 2024-10-04 09:58:55 · 753 阅读 · 0 评论 -
改进的匿名多智能体路径查找算法
文章提出了一种改进的匿名多智能体路径寻找算法(AMAPF),通过批量处理搜索状态减少了计算资源的需求,并在实验中展示了优于现有方法的性能,尤其在大规模地图和多智能体情况下表现出色。论文题目: Improved Anonymous Multi-Agent Path Finding Algorithm论文链接: https://arxiv.org/abs/2312.10572PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-10-04 09:48:13 · 852 阅读 · 0 评论 -
不平衡环境下用于联邦人脸识别的元学习
文章介绍了在联邦面部识别(FFR)场景下使用Hessian-Free Model Agnostic Meta-Learning(HF-MAML)以及嵌入正则化来应对数据异质性的新方法,并展示了这种方法在不同数据分布下相较于传统联邦平均(FedAvg)算法的优势,尤其是在提升弱性能客户端的表现和提高模型公平性方面。论文题目: Meta-Learning for Federated Face Recognition in Imbalanced Data Regimes。原创 2024-10-04 09:33:57 · 913 阅读 · 0 评论 -
使用合成数据进行自我提升的扩散模型
文章提出了一种利用合成数据自我改进的扩散模型(SIMS),通过负向引导避免模型自噬障碍,提升生成模型的性能和公平性。论文题目: Self-Improving Diffusion Models with Synthetic Data论文链接: https://arxiv.org/abs/2408.16333PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-09-16 14:13:14 · 372 阅读 · 0 评论 -
大语言模型可以“听”和“说”
文章介绍了Mini-Omni模型,一种能够实现实时语音交互的端到端多模态大语言模型,并提出了提升语音生成效率的方法。论文题目: Mini-Omni: Language Models Can Hear, Talk While Thinking in Streaming论文链接: https://arxiv.org/abs/2408.16725PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-09-16 12:30:10 · 407 阅读 · 0 评论 -
视觉语言模型中的人脸社会感知
数据集由合成的人脸图像组成,这些图像通过生成对抗网络(GAN)产生。每个数据集从一个“种子”人脸开始,然后通过变化生成六个原型,分别代表三种不同的人种(亚洲人、黑人、白人)和两种性别(女性和男性)。这些原型人脸保持尽可能多的相似特征(如面部比例、穿着、背景),仅在人种和性别上有所不同。接下来,每个原型人脸在年龄、微笑程度、光照条件和头部姿态上进行变化,产生了每种原型30个图像变体。因此,对于每一种性别-人种组合(共有六种),都生成了180张人脸图像。原创 2024-09-12 10:18:35 · 529 阅读 · 0 评论 -
从学习到的因果网络中估计因果效应
文章提出了一种新的因果推断方法,该方法通过直接从观测数据中学习包含潜在变量的因果贝叶斯网络,并利用该模型来高效地回答因果效应查询,相较于传统的基于表达式的估计方法更具优势,尤其是在处理较大规模模型时。论文题目: Estimating Causal Effects from Learned Causal Networks论文链接: https://arxiv.org/abs/2408.14101PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-09-10 19:04:44 · 997 阅读 · 0 评论 -
本地零阶提示优化
这些书籍不仅适合高校学生、科研人员,更是广大AI从业者的宝贵参考。如果你正在寻找系统且权威的学习资料,这些书籍将是你的不二选择。PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-09-08 15:34:05 · 481 阅读 · 0 评论 -
基于大语言模型智能体的自主机器学习
文章介绍了一种名为MLR-Copilot的新框架,利用大型语言模型自动产生和实施机器学习研究的想法与实验,旨在提高研究效率和创新能力。论文题目: MLR-Copilot: Autonomous Machine Learning Research论文链接: https://arxiv.org/abs/2408.14033PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-09-08 15:12:09 · 644 阅读 · 0 评论 -
基于人机偏好的协作
本文提出了一种名为HAI-Co2的新框架,旨在通过人机协作解决复杂问题,特别关注基于偏好学习的解决方案构建过程,以及利用自然语言促进交互。论文题目: Problem Solving Through Human-AI Preference-Based Cooperation论文链接: https://arxiv.org/abs/2408.07461PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-09-04 19:21:35 · 743 阅读 · 0 评论 -
大语言模型的情景记忆
本文提出了一种名为POEM的新方法,利用情景记忆优化提示中的示例顺序,有效提升了大型语言模型在少量示例学习场景下的性能。论文题目: Large Language Models Prompting With Episodic Memory论文链接: https://arxiv.org/abs/2408.07465PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-09-03 14:41:25 · 613 阅读 · 0 评论 -
具身人工智能的最新进展--综述
文章对多模态大模型时代具身人工智能领域的全面综述,涵盖了具身机器人的最新进展、模拟器、感知、交互、具身代理及从模拟到现实世界的适应等关键研究方向。论文题目: Aligning Cyber Space with Physical World: A Comprehensive Survey on Embodied AI论文链接: https://arxiv.org/abs/2407.06886PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-09-03 14:20:51 · 839 阅读 · 0 评论 -
复杂 RAG 系统的检索规划
文章介绍了一种名为REAPER的推理基础检索规划方法,用于高效生成复杂查询所需的检索计划,以支持基于RAG的对话系统,通过减少延迟并保持响应质量。论文题目: REAPER: Reasoning based Retrieval Planning for Complex RAG Systems论文链接: https://arxiv.org/abs/2407.18553PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-08-29 14:25:45 · 833 阅读 · 0 评论 -
复杂处理下的因果推断--综述
文章全面回顾了处理复杂治疗设置下的因果推断方法,包括多值、连续和捆绑治疗,并探讨了现有数据集、开源代码及未来研究方向。论文题目: Causal Inference with Complex Treatments: A Survey论文链接: https://arxiv.org/abs/2407.14022PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-08-29 14:03:54 · 588 阅读 · 0 评论 -
Mamba对时间序列预测有效吗
文章介绍了Simple-Mamba (S-Mamba),一种基于Mamba的选择性状态空间模型,该模型通过降低计算复杂度,在保持高性能的同时实现了高效的时间序列预测。论文题目:Is Mamba Effective for Time Series Forecasting?论文链接: https://arxiv.org/abs/2403.11144PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-08-22 23:21:01 · 804 阅读 · 0 评论 -
探索用于多类无监督异常检测的状态空间模型
文章介绍了MambaAD,这是一种利用Mamba架构的多类别无监督异常检测方法,通过结合预训练编码器和具有Locality-Enhanced State Space模块的Mamba解码器,在多个数据集上实现了最先进的性能。论文题目:MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection论文链接: https://arxiv.org/abs/2404.06564。原创 2024-08-22 17:10:32 · 850 阅读 · 0 评论 -
一种针对自然语言文本的提示策略
本文提出了一种新颖的通用提示策略,用于利用大型语言模型从自然语言文本中高效提取业务流程信息,并将其用于生成流程模型,该策略在多种模型上均表现出优越性能。论文题目: A Universal Prompting Strategy for Extracting Process Model Information from Natural Language Text using Large Language Models论文链接: https://arxiv.org/abs/2407.18540。原创 2024-08-21 18:44:47 · 753 阅读 · 0 评论 -
一种用于治疗性肽生成的多模态对比扩散模型
本文提出了一种名为MMCD的多模态对比扩散模型,该模型通过融合肽的序列和结构信息,在生成治疗性肽的任务中表现出优越性能,特别是在抗微生物和抗肿瘤肽的生成方面。论文题目: A Multi-Modal Contrastive Diffusion Model for Therapeutic Peptide Generation论文链接: https://arxiv.org/abs/2312.15665PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-08-21 10:13:05 · 659 阅读 · 0 评论 -
知识图谱结构的提示
本文提出了一种名为“知识图谱结构作为提示”(KG Structure as Prompt)的新方法,通过将知识图谱中的结构信息整合到小型语言模型的提示学习中,有效提升了这些模型在有限样本条件下进行知识驱动的因果发现任务的能力。论文题目:Knowledge Graph Structure as Prompt: Improving Small Language Models Capabilities for Knowledge-based Causal Discovery。原创 2024-08-17 15:03:42 · 364 阅读 · 0 评论 -
CourseGPT彻底改变本科学习
本文介绍了CourseGPT这一生成式AI工具,它通过利用大型语言模型为学生提供个性化和实时支持,显著提升了学习体验和成果,并讨论了其在教育领域的应用潜力及面临的挑战。论文题目: Revolutionizing Undergraduate Learning: CourseGPT and Its Generative AI Advancements论文链接: https://arxiv.org/abs/2407.18310PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-08-17 14:53:40 · 324 阅读 · 0 评论 -
使用 GPT-4 指导因果机器学习
文章探讨了GPT-4在仅基于变量标签的情况下识别因果关系的能力,并通过问卷调查发现参与者认为GPT-4生成的因果图最准确,同时展示了当GPT-4与因果机器学习方法结合时能够产生更符合领域专家认知的因果结构。论文题目:Agent-E: From Autonomous Web Navigation to Foundational Design Principles in Agentic Systems论文链接: https://arxiv.org/abs/2407.13032。原创 2024-08-16 10:35:53 · 297 阅读 · 0 评论 -
Internet of Agents: 异构代理网络
文章提出了一种名为Internet of Agents (IoA)的新框架,它通过灵活和可扩展的方法促进了大型语言模型基础上的多代理协作,展示了在多种任务中超越现有技术的表现。论文题目:Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence论文链接:https://www.arxiv.org/abs/2407.07061PS: 欢迎大家扫码关注公众号。原创 2024-08-15 23:37:52 · 972 阅读 · 0 评论 -
从自主 Web 导航到智能体系统中的基本设计原则
文章介绍了Agent-E,一种具有新颖架构的网络智能体,它通过引入层次化设计、DOM提炼与降噪技术以及变化观察机制,在WebVoyager基准测试中表现出色,并从中总结出了一套适用于高效智能体系统的设计原则。论文题目:Agent-E: From Autonomous Web Navigation to Foundational Design Principles in Agentic Systems论文链接: https://arxiv.org/abs/2407.13032。原创 2024-08-15 23:35:39 · 419 阅读 · 0 评论 -
LazyLLM:长上下文场景下提高LLM推理效率
文章提出了LazyLLM技术,这是一种针对长上下文场景下提高大型语言模型(LLM)推理效率的方法,它通过动态选择性计算关键token来加速预填充阶段,同时保持推理性能,无需额外的模型微调。并且,LazyLLM可以无缝集成到现有的基于Transformer的LLM中,提高推理速度。论文题目:LazyLLM: Dynamic Token Pruning for Efficient Long Context LLM Inference论文链接:https://arxiv.org/abs/2407.14057。原创 2024-07-31 22:25:11 · 1214 阅读 · 0 评论 -
大语言模型稀疏水印技术
该文章介绍了一种称为Sparse Watermark的新型大型语言模型水印技术,它通过在少量精心选择的词汇上嵌入标记,实现了高检测率同时保持了生成文本的高质量,解决了以往方法中水印效果与文本质量之间的矛盾。论文题目:Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality论文链接:https://arxiv.org/abs/2407.13803PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-07-31 22:20:16 · 880 阅读 · 0 评论 -
大语言模型高效微调所需的最小数据
论文探讨了大型语言模型高效微调策略,通过实验发现少量数据即可显著提升特定任务性能,并提出一种基于早期模型表现的贝叶斯超参数优化方法,有效预测最终模型效果,为资源节约型的LLM微调提供新途径。论文题目:Crafting Efficient Fine-Tuning Strategies for Large Language Models论文链接:https://arxiv.org/abs/2407.13906PS: 欢迎大家扫码关注公众号,我们一起在AI的世界中探索前行,期待共同进步!原创 2024-07-29 00:13:37 · 455 阅读 · 0 评论 -
词汇表大小对大语言模型的影响
在大型语言模型中,平衡模型参数、词汇量与训练数据的规模对于实现高效能和经济性的模型扩展至关重要。论文重点研究了大型语言模型中词汇量大小对模型扩展规律的影响,发现更大规模的模型应配备更庞大的词汇量以优化性能,并通过实验验证了这一观点,指出当前许多大型语言模型所使用的词汇量实际上偏小。论文题目:Scaling Laws with Vocabulary: Larger Models Deserve Larger Vocabularies。原创 2024-07-28 00:58:06 · 688 阅读 · 0 评论