掩码语言模型处理开放式的长文本生成问题

论文探讨了预训练的掩码语言模型在开放式长文本生成领域的潜力,以及如何克服其在处理长文本时的局限性。通常自回归语言模型如BART和GPT系列在这一领域占据主导地位,但它们在生成长度增加时推断效率降低的问题限制了应用。为了改善这一状况,研究者们提出使用迭代的非自回归(Non-Autoregressive, NAR)解码策略,并结合两种方法——动态滑动窗口注意力(Dynamic Sliding Window Attention, DSWA)和线性温度衰减(Linear Temperature Decay, LTD),来增强MLMs的长文本生成能力。在故事叙述和多段落意见文章撰写等任务中,预训练的MLMs不仅能够达到3到13倍的加速,同时还能保持甚至优于强大的自回归模型的表现。
在这里插入图片描述

1 动态滑动窗口注意力

  • (1)动机:在长文本生成中,传统的自注意力机制允许每个token关注整个上下文序列,这可能导致信息过载和处理效率降低。长距离依赖关系处理不当会导致模型“崩溃”,生成无意义或重复的内容。
  • (2)解决策略:动态滑动窗口注意力通过限制每个token仅能关注其邻近的token来减轻这一问题,而不是整个序列。这种机制类似于卷积神经网络的局部感受野概念,有助于模型更有效地处理长文本。
  • (3)操作方式:使用滑动窗口机制调整自注意力层中每个token的注意力模式。窗口大小是可变的,允许模型根据需要调整关注范围。
  • (4)动态调度公式ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值