文章聚焦于多模态大模型(MLMs)时代下具身人工智能(Embodied AI)领域。探讨了Embodied AI在实现人工通用智能(AGI)中的重要性和作为连接网络空间与物理世界的基础技术的角色。特别地,随着多模态大模型和世界模型(WMs)的出现,这些架构因其出色的感知、交互和推理能力而被视作具身代理的“大脑”。首先回顾了具身机器人和模拟器的代表工作,分析了其研究重点和局限性;随后,详细讨论了四个主要研究领域:具身感知、具身交互、具身代理以及模拟到现实的适应。此外,文中还探索了多模态大模型在虚拟和实体具身代理中的应用,并强调了它们对于实现在动态数字和物理环境中的交互的重要性。最后,文章总结了具身AI所面临的挑战和局限,并指出了未来的发展方向。这项研究为具身AI领域的学者提供了重要的参考,并鼓励更多的创新。
1 具身机器人
具身机器人仅体现在多模态大模型(MLMs)和世界模型(WMs)的应用上,还涉及到了视觉语言导航、物体抓取等多种复杂的交互任务。例如,英伟达开发的NvidiaVIMA系统能够在视觉和文本提示的指导下执行复杂任务,甚至模拟物理现象。特斯拉的人形机器人Optimus也在不断迭代,马斯克预测它将成为特斯拉未来的长期价值来源之一。此外,斯坦福大学李飞飞团队发布的成果表明,机器人可以通过接入大模型直接理解人类的自然语言指令,并将其转化为具体的行动。这些进展标志着具身机器人正朝着更加自主和智能的方向发展,有望在未来实现更广泛的应用场景。
<