本文介绍了一种名为POEM(PrOmpting with Episodic Memory)的新方法,用于优化大型语言模型(LLM)的提示。POEM旨在解决现有提示优化方法资源消耗大或性能不足的问题,特别是在少量示例学习的情况下。该方法将提示优化作为强化学习问题处理,利用情景记忆存档输入数据、少量示例的不同排列及训练期间获得的奖励。在测试阶段,POEM会为每个测试查询选择能够产生最高奖励的示例序列。实验结果显示,POEM在多种文本分类任务上的表现优于近期的技术,如TEMPERA和RLPrompt,并且在更广泛的自然语言理解任务中也表现出色,优于传统的启发式方法。此外,POEM还被证明在效率方面显著优于其他基于强化学习的方法,例如RLPrompt和TEMPERA,在某些基准测试上训练速度比这些方法快约150倍。
1 提示优化技术–POEM
语言模型对其内部结构、输入数据以及提示的敏感性是显著的。特别是对于大型语言模型而言,它们的能力随着参数数量的增加而增强,展现出诸如上下文学习等新特性,这使得模型仅需少量示例就能完成任务。然而,这种能力依赖于精心设计和组织的提示内容,包括所选示例及其顺序。研究表明,即使是细微的变化,如选项顺序的不同,也会对模型的性能产生影响。因此,优化提示内容和结构对于确保模型的一致性和高效性至关重要。下面是提示优化技术POEM的一些主要特点和工作流程:
(1)主要特点:
-
简化和高效