多智能体系统中的规划

本文提出了一种面向智能体的规划框架,旨在通过多智能体系统有效分解用户查询并分配子任务,从而提高在复杂现实问题上的解决能力,确保解答的可解性、完整性和非冗余性。

在这里插入图片描述

1 面向智能体的规划

智能体框架的设计原则

·可解性 (Solvability):确保每个子任务可以由至少一个智能体独立解决,从而保证输出的可靠性。

·完整性 (Completeness):确保所有必要的信息都被纳入到子任务中,以便最终能生成一个全面的答案。

·非冗余性 (Non-redundancy):确保子任务之间没有重复的信息和要求,以优化资源的使用

任务分解与分配

·快速分解与分配:元智能体首先对用户查询进行快速分解,并为每个子任务分配合适的智能体。这一过程不仅提高了任务的执行效率,还确保了任务的有效性。

子任务的评估

·奖励模型:文章提出了一种奖励模型,用于在不实际调用智能体的情况下,评估子任务的可解性和智能体的响应质量。通过这种方式,元智能体能够根据评估结果决定是否执行子任务或进行重新规划。

反馈机制

·持续改进:系统内集成了反馈循环,能够根据执行结果和智能体的表现不断优化任务分解和分配的策略。这一机制确保了智能体系统的灵活性和适应性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值