机器人故障的多模态一致性解释生成

本文探讨了机器人故障的多模态解释生成问题,强调了解释一致性的重要性。当前的研究大多侧重于文本解释,但忽视了多模态(如图形和文本)解释之间可能存在的语义不一致。文章提出了一种新的方法,通过对不同模态的解释进行逻辑一致性评估,并进行必要的细化,以生成更具连贯性的解释。具体而言,作者设计了一个分类框架来评估解释的相互关系,并通过对已有神经网络模型的微调,提升了对多模态解释一致性的检测能力。这种方法的最终目标是增强用户对机器人决策的理解和信任,从而促进人机交互的有效性。

在这里插入图片描述

1 多模态一致性解释生成框架

一致性评估

·问题定义:该框架首先明确了一致性评估的目标,旨在评估文本解释和图形解释之间的逻辑关系。

·分类任务:将一致性评估视为一个分类问题,主要评估解释之间是否存在支持、否定或矛盾的关系。

解释细化

·细化策略:根据一致性评估的结果,框架提出了几种细化策略。比如,如果图形解释不支持文本解释,就会假设文本解释是正确的,并寻找支持该文本解释的新图形解释;反之,则会生成新的文本解释。

获取文本和图形解释

·生成文本解释:框架利用已有的技术,将任务计划和观察序列转化为自然语言描述,以生成文本解释。

·图形解释的构建:图形解释则是通过分析机器人在特定时间的观察结果,利用场景图将相关信息进行可视化,突出故障的原因。

模态一致性分类

·分类模型:框架中设计了一种分类模型,用于评估不同模态解释之间的一致性。该模型基于已有的神经网络进行训练,以便准确识别解释之间的逻辑关系。

在这里插入图片描述

2 结语

文章提出了一种方法,通过检测和改善多模态解释的一致性,以生成关于机器人故障的更清晰、可理解的解释,从而提升用户对机器人行为的理解和信任。

论文题目: Multimodal Coherent Explanation Generation of Robot Failures

论文链接: https://arxiv.org/abs/2410.00659

PS: 欢迎大家扫码关注公众号_,我们一起在AI的世界中探索前行,期待共同进步!
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值