【李宏毅2021机器学习深度学习】6-2 生成式对抗网络GAN2——理论介绍篇WGAN

我们的目标:让生成的分布Pg = Pdata

在这里插入图片描述

怎么计算两个分布的差异?(只需要采样足够,剩下的交给Discriminator,详细证明参考14年作者论文)

在这里插入图片描述
在这里插入图片描述

进行替换,求得最终目标函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

想要什么分布,就设计 不同的优化函数,详见这篇文章

在这里插入图片描述

GAN难train,GAN的训练小技巧👇

难训练的原因:Pg和Pdata的分布不重叠

在这里插入图片描述

不重叠JS分布的值总是等于log2,难以判断生成器是否在训练好

在这里插入图片描述

换种方式衡量 两个分布 的差异?

在这里插入图片描述

穷举所有铲土的方式 才能计算 Wasserstein distance
在这里插入图片描述
假设 能计算W,Discriminator就能工作

在这里插入图片描述

眼睛的进化史

在这里插入图片描述

计算Wassersteion distance对于Generator来说(直接给出了,而且D(Discriminator) 要足够平滑)

在这里插入图片描述

怎么确保D是平滑的?(Spectral Normalization)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值