我们的目标:让生成的分布Pg = Pdata
怎么计算两个分布的差异?(只需要采样足够,剩下的交给Discriminator,详细证明参考14年作者论文)
进行替换,求得最终目标函数
想要什么分布,就设计 不同的优化函数,详见这篇文章
GAN难train,GAN的训练小技巧👇
难训练的原因:Pg和Pdata的分布不重叠
不重叠JS分布的值总是等于log2,难以判断生成器是否在训练好
换种方式衡量 两个分布 的差异?
穷举所有铲土的方式 才能计算 Wasserstein distance
假设 能计算W,Discriminator就能工作