数字图像处理概念梳理(一)

1.图像定义:一幅图像可以定义为一个二维空间的函数f(x,y),函数幅值f称为图像在该点的强度或灰度。当f离散时,称为数字图像。
2.函数f(x,y)可以用两个分量表征:入射分量{i(x,y)(0,infinity)}和反射分量{r(x,y)(0,1)}
3.取样:对坐标值进行数字化;量化:对幅值数字数字化。数字图像的质量很大程度上依赖取样和量化所用的样本数和灰度级。
4.数字图像的原点位于左上角,其中正x轴向下延伸,y轴向右延伸。
5.对比度:一幅图像中最高和最低灰度级间的灰度差。饱和度:超过饱和度的灰度值将会被剪切掉这样一个最高值。
6.存储数字图像所需比特数b为:b=MNk;(M,N为行列数,k为比特数)
7.空间分辨率:图像中可辨别的最小细节的度量。每单位距离点数目;灰度分辨率:灰度级中可分辨的最小变化。用于量化灰度的比特数。
8.图像内插法:内插法是用已知数据来估计未知位置的数值处理(放大缩小)。 a.最近内插法:把原图像中最邻近的灰度赋给每个新位置。可能失真;b.双线性内插法:用4个最邻近去估计给定位置的灰度。赋值公式:v(x,y)=ax+by+cxy+d 结果更优但是计算量增加。c.双三次内插法:它计算16个最邻近点。赋值公式:v(x,y)=∑∑aij(x)(y) (i,j取值为[0,3])。双三次是商用标准内插。
9.相邻像素:坐标x,y的相邻坐标为(x+1,y)、(x-1,y)、(x,y+1)、(x,y-1) ;这组像素称为p的4邻域N4(p)表示。p的4个对角邻域(x+1,y+1)、(x+1,y-1)、(x-1,y+1)、(x_1,y-1)。用ND(p)表示。一起称为p的8邻域。用N8(p)表示。
10.邻接像素:距离(x,y)为1的像素记作:V={1}
11.图像相减:增强图像之间的差,目的是增强细节;图像相乘(相除):矫正阴影。
12.图像配准:用于对齐两幅相同场景的图像。通过使用约束点控制。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>