一、基本介绍
AP表示磁心有效截面积与窗 口面积的乘积。计算公式为
A
P
=
A
w
⋅
A
e
AP = A_{\text{w}} \cdot A_{\text{e}}
AP=Aw⋅Ae
式 中, AP 的单位是cm ; A 为磁心可绕导线的窗口面积(cm ); A 为磁心有效截面积(cm ),
S
J
≈
C
∗
D
S_{J} \approx C*D
SJ≈C∗D
Sj为磁心几何尺寸 的截面积 ,c 为 舌宽 ,D为磁心厚度。 根据计算出的AP值 , 即可查表找出所需磁心型号
二、具体步骤
- 高频变压器电路的波形参数分析
开关 电源 的 电压 及 电流波 形 比较复杂 ,既有输入正弦波、半波或全波整流波 ,又有矩形波(PWM波形)、 锯齿波(不连续电流模式的一次侧电流波形) 、梯形波(连续电流模式的一次侧电流波形)等。 高频变压器 电路 中有3 个波形参数 : 波形系数, 波形因数, 波峰因数(略)
波形系数
为便 于分析 , 在不考虑铜损的情况下给高 频变压器 的输入端施加交变的正弦波 电流 ,在一
次 、 二次绕组中就会产生感应电动势e。 根据法拉第电磁感应定律 ,
e
=
d
Φ
d
t
=
d
(
N
A
B
sin
(
ω
t
)
)
d
t
=
N
A
B
ω
cos
(
ω
t
)
e = \frac{d\Phi}{dt} = \frac{d(N A B \sin(\omega t))}{dt} = N A B \omega \cos(\omega t)
e=dtdΦ=dtd(NABsin(ωt))=NABωcos(ωt)
其中N 为绕组匝数 , A 为变压器磁心的截面积 , B 为交变电流产生的磁感应强度 , 角频率2Πf。 正弦波的电压有效值为
U
=
2
2
×
N
A
B
×
2
π
f
=
2
π
N
A
B
f
=
4.44
N
A
B
f
U = \frac{\sqrt{2}}{2} \times N A B \times 2\pi f = \sqrt{2} \pi N A B f = 4.44 N A B f
U=22×NAB×2πf=2πNABf=4.44NABf
在开关电源中定义正弦波的波形系数为4.44。利用傅里叶级数可求出方波波形系数为:
K
f
=
4
2
2
π
×
2
2
π
2
=
4
K_{f} = \frac{4\sqrt{2}}{2\pi} \times \frac{2\sqrt{2}\pi}{2} = 4
Kf=2π42×222π=4
波形因数
为便于对方波、矩形波、三角波、锯齿波、梯形波等周期性非正弦波形进行分析,需要引入波形因数的概念。在电子测量领域定义的波形因数与开关电源波形系数的定义有所不同,它表示有效值电压(U)与平均值电压之比,为便于和K区分,这里用小写的k表示,有公式:
k
f
=
U
RMS
U
ˉ
k_{f} = \frac{U_{\text{RMS}}}{\bar{U}} \newline
kf=UˉURMS
以正弦波为例
k
f
=
2
U
P
2
÷
2
U
P
π
=
2
π
4
=
1.111
k_{f} = \frac{\sqrt{2} U_{\text{P}}}{2} \div \frac{2 U_{\text{P}}}{\pi} = \frac{\sqrt{2} \pi}{4} = 1.111
kf=22UP÷π2UP=42π=1.111
开关电源6种常见波形的参数见表 。 因方波和梯形波的平均值为零 ,故改用电压均绝值.矩形波,表示脉冲宽度 t,表示周期 T,占空比 D = t/T。
- 用AP法(面积乘积法)选择磁心的公式推导
令一次绕组 的有效值电压为U1,一次绕组的匝数为Np,所选磁心的交流磁通密度为Bac,磁通量为O,开关周期T,开关频率为f,一次侧电流的波形系数为Kf,磁芯有效截面积为Ae,有关系式
U 1 = N P ⋅ d Φ d t = N P ⋅ B A C A e K f T × 1 0 − 4 = N P B A C A e K f f × 1 0 − 4 \begin{align*} U_{1} &= N_{P} \cdot \frac{d\Phi}{dt} = N_{P} \cdot \frac{B_{AC} A_{e} K_{f}}{T} \times 10^{-4} \\ \\ &= N_{P} B_{AC} A_{e} K_{f} f \times 10^{-4} \end{align*} U1=NP⋅dtdΦ=NP⋅TBACAeKf×10−4=NPBACAeKff×10−4
考虑到Kf=4 * kf关系式之后,可推导出:
N
P
=
U
1
×
1
0
4
4
k
f
B
A
C
A
e
f
N_{P} = \frac{U_{1} \times 10^{4}}{4 k_{f} B_{AC} A_{e} f}
NP=4kfBACAefU1×104
同理设二次绕组的有效值电压为Us,二次绕组的匝数为Ns,可得
N
S
=
U
S
×
1
0
4
4
k
f
B
A
C
A
e
f
N_{S} = \frac{U_{S} \times 10^{4}}{4 k_{f} B_{AC} A_{e} f}
NS=4kfBACAefUS×104
设绕组的电流密度为单位是A/cm²,导线的截面积为s = I/J。令高频变压器的窗口面积利用系数为K,一次、二次绕组的有效值电流分别为I1、I2,绕组面积被完全利用时。
K
w
A
w
=
N
P
⋅
I
1
J
+
N
S
⋅
I
2
J
A
w
=
N
P
K
w
⋅
I
1
J
+
N
S
K
w
⋅
I
2
J
\begin{align*} K_{w} A_{w} = N_{P} \cdot \frac{I_{1}}{J} + N_{S} \cdot \frac{I_{2}}{J} \\ \\\ A_{w} = \frac{N_{P}}{K_{w}} \cdot \frac{I_{1}}{J} + \frac{N_{S}}{K_{w}} \cdot \frac{I_{2}}{J} \end{align*}
KwAw=NP⋅JI1+NS⋅JI2 Aw=KwNP⋅JI1+KwNS⋅JI2
在将上面公式整理一下得到
A
w
=
U
1
I
1
+
U
S
I
2
4
K
w
k
f
J
B
A
C
A
e
f
×
1
0
4
(
cm
2
)
A_{w} = \frac{U_{1} I_{1} + U_{S} I_{2}}{4 K_{w} k_{f} J B_{AC} A_{e} f} \times 10^{4} \left( \text{cm}^{2} \right)
Aw=4KwkfJBACAefU1I1+USI2×104(cm2)
A
P
=
A
w
A
e
=
U
1
I
1
+
U
s
I
2
4
K
w
k
f
J
B
A
C
A
e
f
×
1
0
4
×
A
e
=
P
1
+
P
O
4
K
w
k
f
J
B
A
C
f
×
1
0
4
A P = A_{w} A_{e} = \frac{U_{1} I_{1} + U_{s} I_{2}}{4 K_{w} k_{f} J B_{AC} A_{e} f} \times 10^{4} \times A_{e} = \frac{P_{1} + P_{O}}{4 K_{w} k_{f} J B_{AC} f} \times 10^{4}
AP=AwAe=4KwkfJBACAefU1I1+UsI2×104×Ae=4KwkfJBACfP1+PO×104高频变压器的视在功率表示一次绕组和二次 绕组所承受的总功率, 即S = P I+ P O 。 因电源效率
P o/P I, 故:
A
P
=
A
w
A
e
=
(
1
+
η
)
P
O
4
η
K
w
k
f
J
B
A
C
f
×
1
0
4
(
cm
4
)
A P = A_{w} A_{e} = \frac{(1 + \eta) P_{O}}{4 \eta K_{w} k_{f} J B_{AC} f} \times 10^{4} \left( \text{cm}^{4} \right)
AP=AwAe=4ηKwkfJBACf(1+η)PO×104(cm4)
这就是A P 法选择磁心的基本公式。